Toggle light / dark theme

Quantum Computers Could Crack Encryption Sooner Than Expected With New Algorithm

One of the most well-established and disruptive uses for a future quantum computer is the ability to crack encryption. A new algorithm could significantly lower the barrier to achieving this.

Despite all the hype around quantum computing, there are still significant question marks around what quantum computers will actually be useful for. There are hopes they could accelerate everything from optimization processes to machine learning, but how much easier and faster they’ll be remains unclear in many cases.

One thing is pretty certain though: A sufficiently powerful quantum computer could render our leading cryptographic schemes worthless. While the mathematical puzzles underpinning them are virtually unsolvable by classical computers, they would be entirely tractable for a large enough quantum computer. That’s a problem because these schemes secure most of our information online.

Simulations reveal the atomic-scale story of qubits

Researchers led by Giulia Galli at University of Chicago’s Pritzker School of Molecular Engineering report a computational study that predicts the conditions to create specific spin defects in silicon carbide. Their findings, published online in Nature Communications, represent an important step towards identifying fabrication parameters for spin defects useful for quantum technologies.

Electronic spin defects in semiconductors and insulators are rich platforms for , sensing, and communication applications. Defects are impurities and/or misplaced atoms in a solid and the electrons associated with these carry a spin. This quantum mechanical property can be used to provide a controllable qubit, the basic unit of operation in quantum technologies.

Yet the synthesis of these spin defects, typically achieved experimentally by implantation and annealing processes, is not yet well understood, and importantly, cannot yet be fully optimized. In —an attractive host material for spin qubits due to its industrial availability—different experiments have so far yielded different recommendations and outcomes for creating the desired spin defects.

MIT’s New Fluxonium Qubit Circuit Enables Quantum Operations With Unprecedented Accuracy

The advance brings quantum error correction a step closer to reality.

In the future, quantum computers may be able to solve problems that are far too complex for today’s most powerful supercomputers. To realize this promise, quantum versions of error correction codes must be able to account for computational errors faster than they occur.

However, today’s quantum computers are not yet robust enough to realize such error correction at commercially relevant scales.

ATLAS achieves highest-energy detection of quantum entanglement

Quantum entanglement is one of the most astonishing properties of quantum mechanics. If two particles are entangled, the state of one particle cannot be described independently from the other. This is a unique property of the quantum world and forms a crucial difference between classical and quantum theories of physics. It is so important, the 2022 Nobel Prize in Physics was awarded to Alain Aspect, John F. Clauser and Anton Zeilinger “for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science”.

The large mass of the top quark, which is greater than any other particle, remains one of the most enduring mysteries of the Standard Model. Why this is so remains unexplained, however, the top quark has many unique properties to exploit as a result. The top quark is so heavy that it is extremely unstable and decays before it has time to hadronise, transferring all of its quantum numbers to its decay particles. Physicists can detect these decay particles and thus reconstruct the quantum state of a top quark, a feat that is impossible with any other quark. Most importantly, they can measure its spin and use it to show that entanglement can be studied in top-quark-pair production at the LHC.

Entanglement has indeed been measured in the past, but not quite like this. Most previous entanglement measurements involved low non-relativistic energies, typically utilising photons or electrons. The LHC collides protons with an incredibly high centre-of-mass energy. The data used in ATLAS’ new measurement were obtained from collisions at 13 TeV collected between 2015 and 2018. This means researchers are delving into an energy scale over 12 orders of magnitude (a thousand billion times) higher than typical laboratory experiments.

Beyond Combustion: Highly Efficient Quantum Engines on the Horizon

Scientists unveil exciting possibilities for the development of highly efficient quantum devices.

Quantum mechanics is a branch of physics that explores the properties and interactions of particles at very small scale, such as atoms and molecules. This has led to the development of new technologies that are more powerful and efficient compared to their conventional counterparts, causing breakthroughs in areas such as computing, communication, and energy.

A quantum leap in engine design.

Researchers advance effort to turn diamonds into a quantum simulator

Diamonds are often prized for their flawless shine, but Chong Zu, an assistant professor of physics in Arts & Sciences at Washington University in St. Louis, sees a deeper value in these natural crystals. As reported in Physical Review Letters, Zu and his team have taken a major step forward in a quest to turn diamonds into a quantum simulator.

Co-authors of the paper include Kater Murch, the Charles M. Hohenberg Professor of Physics, and Ph.D. students Guanghui He, Ruotian (Reginald) Gong and Zhongyuan Liu. Their work is supported in part by the Center for Quantum Leaps, a signature initiative of the Arts & Sciences that aims to apply quantum insights and technologies to physics, biomedical and , drug discovery and other far-reaching fields.

The researchers transformed by bombarding them with . Some of those nitrogen atoms dislodge carbon atoms, creating flaws in an otherwise perfect crystal. The resulting gaps are filled with electrons that have their own spin and magnetism, that can be measured and manipulated for a wide range of applications.

Google’s Plan to Give YOU a Quantum Computer By 2029

While the Quantum Computer race is heating up with companies such as Atlantic Quantum Innovations joining the race, Google has published a plan to make Quantum Computers usable for everyday consumers by 2029. This is in hopes of revolutionizing Healthcare, finding room temperature superconductors, enabling with like artificial general intelligence through quantum AI and increasing supercomputer performance a million times. In this video, we’re exploring all of these secret projects and other Quantum Computing Companies.

TIMESTAMPS:
00:00 CPU’s, GPU’s and now QPU’s.
01:14 Google’s Secret Project.
04:36 Other Quantum Computer Companies.
07:17 Fastest Quantum Computer today.

#google #quantum #future

Ultrafast dense DNA functionalization of quantum dots and rods for scalable 2D array fabrication with nanoscale precision

Abstract: Full Publication #OpenAccess.

Scalable fabrication of two-dimensional (2D) arrays of quantum dots (QDs) and quantum rods (QRs) with nanoscale precision is required for numerous device applications. However, self-assembly–based fabrication of such arrays using DNA origami typically suffers from low yield due to inefficient QD and QR DNA functionalization. In addition, it is challenging to organize solution-assembled DNA origami arrays on 2D device substrates while maintaining their structural fidelity. Here, we reduced manufacturing time from a few days to a few minutes by preparing high-density and rehydration process. We used a surface-assisted large-scale assembly (SALSA) method to construct 2D origami lattices directly on solid substrates to template QD and QR 2D arrays with orientational control, with overall loading yields exceeding 90%. Our fabrication approach enables the scalable, high fidelity manufacturing of 2D addressable QDs and QRs with nanoscale orientational and spacing control for functional 2D photonic devices.


Dehydration and surface-assisted assembly enable rapid, scalable quantum dot and quantum rod 2D arrays with nanoscale precision.

My predictions about Artificial Super Intelligence (ASI)

Patreon: https://www.patreon.com/daveshap.
LinkedIn: https://www.linkedin.com/in/dave-shap-automator/
Consulting: https://www.daveshap.io/Consulting.
GitHub: https://github.com/daveshap.
Medium: https://medium.com/@dave-shap.

00:00 — Introduction.
00:38 — Landauer Limit.
02:51 — Quantum Computing.
04:21 — Human Brain Power?
07:03 — Turing Complete Universal Computation?
10:07 — Diminishing Returns.
12:08 — Byzantine Generals Problem.
14:38 — Terminal Race Condition.
17:28 — Metastasis.
20:20 — Polymorphism.
21:45 — Optimal Intelligence.
23:45 — Darwinian Selection “Survival of the Fastest“
26:55 — Speed Chess Metaphor.
29:42 — Conclusion & Recap.

Artificial intelligence and computing power are advancing at an incredible pace. How smart and fast can machines get? This video explores the theoretical limits and cutting-edge capabilities in AI, quantum computing, and more.

We start by looking at the Landauer Limit — the minimum energy required to perform computation. At room temperature, erasing just one bit of information takes 2.85 × 10^−21 joules. This sets limits on efficiency.

Quantum computing offers radical improvements in processing power by utilizing superposition and entanglement. Through quantum parallelism, certain problems can be solved exponentially faster than with classical computing. However, the technology is still in early development.

The human brain is estimated to have the equivalent of 1 exaflop processing power — a billion, billion calculations per second! Yet it uses just 20 watts, making it vastly more energy-efficient than today’s supercomputers. Some theorize the brain may use quantum effects, but this is speculative.

/* */