Menu

Blog

Archive for the ‘quantum physics’ category: Page 482

Feb 15, 2021

Light and a Single Electron Used to Detect Quantum Information Stored in 100,000 Nuclear Quantum Bits

Posted by in categories: internet, quantum physics

Researchers unlocked the electronic properties of graphene by folding the material like origami paper.


Researchers have found a way to use light and a single electron to communicate with a cloud of quantum bits and sense their behavior, making it possible to detect a single quantum bit in a dense cloud.

The researchers, from the University of Cambridge, were able to inject a ‘needle’ of highly fragile quantum information in a ‘haystack’ of 100000 nuclei. Using lasers to control an electron, the researchers could then use that electron to control the behavior of the haystack, making it easier to find the needle. They were able to detect the ‘needle’ with a precision of 1.9 parts per million: high enough to detect a single quantum bit in this large ensemble.

Continue reading “Light and a Single Electron Used to Detect Quantum Information Stored in 100,000 Nuclear Quantum Bits” »

Feb 15, 2021

New Physics Rules Tested by Using a Quantum Computer to Create a “Toy-Universe”

Posted by in categories: computing, quantum physics

Simulation of non-Hermitian quantum mechanics using a quantum computer goes beyond centuries-old conventions. Aalto researchers have used an IBM quantum computer to explore an overlooked area of physics, and have challenged 100-year-old cherished notions about information at the quantum level.

Feb 15, 2021

A Magnetic Twist to Graphene Could Offer a Dramatic Increase in Processing Speeds Compared to Electronics

Posted by in categories: particle physics, quantum physics

Electrons in materials have a property known as ‘spin’, which is responsible for a variety of properties, the most well-known of which is magnetism. Permanent magnets, like the ones used for refrigerator doors, have all the spins in their electrons aligned in the same direction. Scientists refer to this behavior as ferromagnetism, and the research field of trying to manipulate spin as spintronics.

Down in the quantum world, spins can arrange in more exotic ways, giving rise to frustrated states and entangled magnets. Interestingly, a property similar to spin, known as “the valley,” appears in graphene materials. This unique feature has given rise to the field of valleytronics, which aims to exploit the valley property for emergent physics and information processing, very much like spintronics relies on pure spin physics.

Feb 14, 2021

Visualizing Quantum Computation

Posted by in category: quantum physics

How to visualize a Quantum Computation. In particular, this article presents a way to understand how superpositions work through a graphical tree.

Feb 14, 2021

Quantum Mechanics, Free Will and the Game of Life

Posted by in categories: neuroscience, quantum physics

Some thoughts triggered by the death of the mathematician John Conway.


Sorry for the inconvenience, ScientificAmerican.com is currently down for maintenance. Please check back later.

Feb 13, 2021

Quantum Computer Chips Manufactured Using Mass-Market Industrial Fabrication Techniques

Posted by in categories: computing, quantum physics

Intel engineers have solved the quality control challenge for mass production of quantum computers.

Feb 12, 2021

Scientists find first evidence of rare Higgs boson decay

Posted by in categories: particle physics, quantum physics

This work provides evidence for something scientists predicted long ago.


Scientists have spotted the first evidence of a rare Higgs boson decay, expanding our understanding of the strange quantum universe.

Feb 12, 2021

Q-CTRL’s new AI toolset allows quantum computers to self-optimize

Posted by in categories: information science, quantum physics, robotics/AI

The toolset runs with Q-CTRL’s flagship BOULDER OPAL software for developers and R&D teams, automated closed-loop hardware optimization is also trained to obtain new experimental data/results from quantum computers while simultaneously running optimizations for algorithms. It can be used as a standalone tool or in tandem with a machine-learner online optimization package (M-LOOP) that manages quantum experiments autonomously.

Feb 12, 2021

New research tackles a central challenge of powerful quantum computing

Posted by in categories: quantum physics, supercomputing

To build a universal quantum computer from fragile quantum components, effective implementation of quantum error correction (QEC) is an essential requirement and a central challenge. QEC is used in quantum computing, which has the potential to solve scientific problems beyond the scope of supercomputers, to protect quantum information from errors due to various noise.

Feb 11, 2021

Researchers gather numerical evidence of quantum chaos in the Sachdev-Ye-Kitaev model

Posted by in categories: cosmology, particle physics, quantum physics

Over the past few years, many physicists worldwide have conducted research investigating chaos in quantum systems composed of strongly interacting particles, also known as many-body chaos. The study of many-body chaos has broadened the current understanding of quantum thermalization (i.e., the process through which quantum particles reach thermal equilibrium by interacting with one another) and revealed surprising connections between microscopic physics and the dynamics of black holes.