Toggle light / dark theme

A simpler way to connect quantum computers

Researchers have a new way to connect quantum devices over long distances, a necessary step toward allowing the technology to play a role in future communications systems.

While today’s classical data signals can get amplified across a city or an ocean, quantum signals cannot. They must be repeated in intervals—that is, stopped, copied and passed on by specialized machines called quantum repeaters. Many experts believe these quantum repeaters will play a key role in future communication networks, allowing enhanced security and enabling connections between remote quantum computers.

A new Princeton study titled “Indistinguishable telecom band photons from a single erbium ion in the ” and published Aug. 30 in Nature, details the basis for a new approach to building quantum repeaters. It sends telecom-ready light emitted from a single ion implanted in a crystal. The effort was many years in the making, according to Jeff Thompson, the study’s principal author. The work combined advances in photonic design and .

Physicists observe enigmatic ‘Alice Rings’ for the first time

For the first time, physicists from Finland and the United States have observed a special kind of magnetic monopole called an “Alice Ring.”

A team of researchers from the United States and Finland have observed enigmatic “Alice Rings” in super cold gas for the first time. A strange kind of circular magnetic monopoles, “Alice Rings” are a kind of quantum phenomenon that has, until now, only existed in theory. Various forces and particles can arise from the quantum machinery, theoretically including monopoles.


Eduard Muzhevskyi/iStock.

Alice in Wonderland.

Sorting Out Quantum Chaos

A new symmetry-based classification could help researchers describe open, many-body quantum systems that display quantum chaos.

The quest for understanding quantum systems of many particles—and the exotic phenomena they display—fascinates theorists and experimentalists alike, but it’s one with many hurdles. The number of the system’s quantum states increases exponentially with size; these states are hard to prepare, probe, and characterize in experiments, and interactions with the environment “open” the system, further increasing the number of states to consider. As a result, open, many-body quantum systems remain a frontier of exploration in physics, for which researchers haven’t developed a systematic theoretical framework. A new study by Kohei Kawabata of Princeton University and colleagues has taken an important step toward developing such a general framework by offering a complete classification of these systems based on symmetry principles [1] (Fig. 1).

Advancing Quantum Matter: “Golden Rules” for Building Atomic Blocks

Physicists have developed a technique to precisely align supermoiré lattices, revolutionizing the potential for next-generation moiré quantum matter.

National University of Singapore (NUS) physicists have developed a technique to precisely control the alignment of supermoiré lattices by using a set of golden rules, paving the way for the advancement of next-generation moiré quantum matter.

Supermoiré Lattices

Quantum entanglement visualized for the first time ever

The mysterious phenomenon that Einstein once described as “spooky action at a distance” was seen as a wavefunction between two entangled photons.

Quantum physics, the realm of science that describes the Universe at the smallest scales, is known for its counter-intuitive phenomena that seem to defy every law of physics on an everyday scale.

Arguably none of the aspects of quantum physics are as surprising or as troubling as entanglement, the idea that two particles can be connected in such a way that a change to one is instantly reflected in the other, even if the two particles are at opposite sides of the Universe. It’s the word “instantly” that troubled Albert Einstein enough to describe entanglement as “spooky action at a distance”.

UChicago scientists observe first evidence of ‘quantum superchemistry’ in the laboratory

A team from the University of Chicago has announced the first evidence for “quantum superchemistry” – a phenomenon where particles in the same quantum state undergo collective accelerated reactions. The effect had been predicted, but never observed in the laboratory.

The findings, published July 24 in Nature Physics, open the door to a new field. Scientists are intensely interested in what are known as “quantum-enhanced” chemical reactions, which could have applications in quantum chemistry, quantum computing, and other technologies, as well as in better understanding the laws of the universe.


Breakthrough could point way to fundamental insights, new technology.

Challenging Common Understanding: Scientists Discover Unexpected Quantum Interference Anomaly

In a paper recently published in Nature Photonics.

<em>Nature Photonics</em> is a prestigious, peer-reviewed scientific journal that is published by the Nature Publishing Group. Launched in January 2007, the journal focuses on the field of photonics, which includes research into the science and technology of light generation, manipulation, and detection. Its content ranges from fundamental research to applied science, covering topics such as lasers, optical devices, photonics materials, and photonics for energy. In addition to research papers, <em>Nature Photonics</em> also publishes reviews, news, and commentary on significant developments in the photonics field. It is a highly respected publication and is widely read by researchers, academics, and professionals in the photonics and related fields.

Quantum computers could soon connect over longer distances

A new study discusses how high-fidelity quantum information could be sent through fiber optic networks by a novel atomic device.

Did you know quantum transmissions can’t be amplified over a city or an ocean like conventional data signals? Instead, they have to be periodically repeated using specialized devices called quantum repeaters.

For the technology to be used in future communications networks, researchers have developed a novel method of connecting quantum devices over great distances.

/* */