Menu

Blog

Archive for the ‘quantum physics’ category: Page 385

Jun 1, 2022

Physicists record lifetime of graphene qubits

Posted by in categories: computing, quantum physics

For the first ever time, MIT scientists have quantified the temporal coherence (lifetime) of graphene qubits-meaning to what extent it can keep up a special state that enables it to speak to two coherent states at the same time.

As of late, specialists have been incorporating graphene-based materials into superconducting quantum computing gadgets, which guarantee quicker, progressively proficient computing, among different advantages. Up to this point, be that as it may, there’s been no recorded coherence for these advanced qubits, so there’s no knowing whether they’re feasible for practical quantum computing.

In a new study, scientists demonstrated a coherent qubit made from graphene and exotic materials. These materials empower the qubit to change states through voltage, much like transistors in today’s traditional computer chips — and not at all like most different kinds of superconducting qubits. Also, the specialists put a number to that coherence, timing it at 55 nanoseconds, before the qubit comes back to its ground state.

Jun 1, 2022

Breakthrough in teleportation furthers quantum network development

Posted by in categories: innovation, quantum physics

Information teleported between stationary qubits without a direct link.

May 31, 2022

New World’s Fastest Supercomputer Explained

Posted by in categories: quantum physics, supercomputing

https://www.youtube.com/watch?v=HvJGsF4t2Tc

The king is dead, long live the king… of supercomputers!


In this video I discuss New Fastest Supercomputer in the World and the first official Exascale supercomputer — Frontier Supercomputer located at Oak Ridge Lab.

Continue reading “New World’s Fastest Supercomputer Explained” »

May 30, 2022

Physicists Discover Strange Array of Links and Knots in Quantum Matter

Posted by in categories: climatology, mathematics, quantum physics

As physicists dig deeper into the quantum realm, they are discovering an infinitesimally small world composed of a strange and surprising array of links, knots, and winding. Some quantum materials exhibit magnetic whirls called skyrmions — unique configurations sometimes described as “subatomic hurricanes.” Others host a form of superconductivity that twists into vortices.

Now, in an article published in the journal Nature, a Princeton-led team of scientists has discovered that electrons in quantum matter can link one another in strange new ways. The work brings together ideas in three areas of science – condensed matter physics, topology, and knot theory – in a new way, raising unexpected questions about the quantum properties of electronic systems.

Topology is the branch of theoretical mathematics that studies geometric properties that can be deformed but not intrinsically changed. Topological quantum states first came to the public’s attention in 2016 when three scientists, including Duncan Haldane, who is Princeton’s Thomas D. Jones Professor of Mathematical Physics and Sherman Fairchild University Professor of Physics, were awarded the Nobel Prize for their theoretical prediction of topology in electronic materials.

May 28, 2022

Warp drive experiment to turn atoms invisible could finally test Stephen Hawking’s most famous prediction

Posted by in categories: particle physics, quantum physics, space travel

😀


The experiment will investigate the Unruh effect, which is produced by a mixture of quantum mechanics and special relativity.

May 28, 2022

Scientists made a new kind of molecule bigger than some bacteria

Posted by in categories: chemistry, particle physics, quantum physics

A completely new kind of molecule has been made by combining an extremely cold ion and a super-sized atom. The unusual molecular bond between the two particles was thousands of times longer than those in most room-temperature molecules, and the method to make and study it could kick-start a new branch of ultracold quantum chemistry.

May 28, 2022

Neural network-based prediction of the secret-key rate of quantum key distribution

Posted by in categories: quantum physics, robotics/AI, security

For instance, continuous-variable (CV) QKD has its own distinct advantages at a metropolitan distance36,37 due to the use of common components of coherent optical communication technology. In addition, the homodyne38 or heterodyne39 measurements used by CV-QKD have inherent extraordinary spectral filtering capabilities, which allows the crosstalk in wavelength division multiplexing (WDM) channels to be effectively suppressed. Therefore, hundreds of QKD channels may be integrated into a single optical fiber and can be cotransmitted with classic data channels. This allows QKD channels to be more effectively integrated into existing communication networks. In CV-QKD, discrete modulation technology has attracted much attention31,40,41,42,43,44,45,46,47,48,49,50 because of its ability to reduce the requirements for modulation devices. However, due to the lack of symmetry, the security proof of discrete modulation CV-QKD also mainly relies on numerical methods43,44,45,46,47,48,51.

Unfortunately, calculating a secure key rate by numerical methods requires minimizing a convex function over all eavesdropping attacks related with the experimental data52,53. The efficiency of this optimization depends on the number of parameters of the QKD protocol. For example, in discrete modulation CV-QKD, the number of parameters is generally \(1000–3000\) depending on the different choices of cutoff photon numbers44. This leads to the corresponding optimization possibly taking minutes or even hours51. Therefore, it is especially important to develop tools for calculating the key rate that are more efficient than numerical methods.

In this work, we take the homodyne detection discrete-modulated CV-QKD44 as an example to construct a neural network capable of predicting the secure key rate for the purpose of saving time and resource consumption. We apply our neural network to a test set obtained at different excess noises and distances. Excellent accuracy and time savings are observed after adjusting the hyperparameters. Importantly, the predicted key rates are highly likely to be secure. Note that our method is versatile and can be extended to quickly calculate the complex secure key rates of various other unstructured quantum key distribution protocols. Through some open source deep learning frameworks for on-device inference, such as TensorFlow Lite54, our model can also be easily deployed on devices at the edge of the network, such as mobile devices, embedded Linux or microcontrollers.

May 27, 2022

Could the Double-Slit Experiment Finally be Solved?

Posted by in categories: particle physics, quantum physics

The famous double-slit experiment–a now classic showcase of how both light and matter are able to behave as both waves, and particles in their “classical” physical definition–seems almost like magic to many of us.

Because of this unusual function of our physical universe, the double-slit experiment has intrigued physicists for decades, as it suggests the possibility of multiple universes or weird quantum events. However, only recently have researchers at the Vienna University of Technology (TU Wien) found a way to fully validate this experiment, using a particular measurement method on the particle.

May 27, 2022

What if quantum physics could eradicate illness? | Jim Al-Khalili for Big Think

Posted by in categories: biological, evolution, genetics, information science, particle physics, quantum physics

Can quantum science supercharge genetics? | Jim Al-Khalili for Big Think.


This interview is an episode from The Well, our new publication about ideas that inspire a life well-lived, created with the John Templeton Foundation.

Continue reading “What if quantum physics could eradicate illness? | Jim Al-Khalili for Big Think” »

May 27, 2022

Researchers teleport quantum information across rudimentary quantum network

Posted by in categories: computing, internet, quantum physics

Researchers in Delft have succeeded in teleporting quantum information across a rudimentary network. This first of its kind is an important step towards a future quantum internet. This breakthrough was made possible by a greatly improved quantum memory and enhanced quality of the quantum links between the three nodes of the network. The researchers, working at QuTech—a collaboration between Delft University of Technology and the Netherlands Organization for Applied Scientific Research (TNO)—are publishing their findings today in the scientific journal Nature.

The power of a future is based on the ability to send quantum information (quantum bits) between the nodes of the network. This will enable all kinds of applications such as securely sharing confidential information, linking several quantum computers together to increase their computing capability, and the use of highly precise, linked quantum sensors.