Toggle light / dark theme

Finding practical applications for quantum entanglement is a formidable endeavor to say the least, but a group of Chinese researchers overcame some of the fundamental challenges of open-air quantum teleportation by developing a highly accurate laser pointing and tracking system, as reported by Ars Technica. The team was able to teleport a qubit (a standard unit of data in quantum computing) 97 kilometers across a lake using a small set of photons without fiberoptic cables or other intermediaries.

The laser targeting device developed by Juan Yin and his team was necessary to counteract the minute seismic and atmosphere shifts that would otherwise break the link between the two remote locations. While the use of fiberoptic cables solves the point-to-point accuracy problems faced by open-air systems, using the cables to carry entangled photons — which in turn carry the data needed for quantum teleportation — can cause what’s known as “quantum decoherence,” or rather a corruption in the photon’s entanglement data.

In the grand spectrum of scientific achievement, Yin’s research is a small but crucial stepping stone on the path to a global quantum network, allowing for super-fast data transmission with high levels of encryption to take place. Yin and his team think that quantum repeater satellites could be used to build this network, but until scientists figure out a way to give qubits a few more microseconds of staying power, such a network is probably many years off.

A 176-qubit quantum computing platform named Zuchongzhi went online for global users Wednesday night, which is expected to push forward the development of quantum computing hardware and its ecosystem, according to the Center for Excellence in Quantum Information and Quantum Physics under the Chinese Academy of Sciences.

Zhu Xiaobo, chief engineer of the project and professor at the University of Science and Technology of China, said that the research team improved the 66-qubit chip of Zuchonghi-2 by adding control interfaces of 110 coupled qubits, allowing users to manipulate 176 quantum bits.

Zuchongzhi 2 is a 66-qubit programmable quantum computing system made in 2021, which can perform large-scale random quantum circuits sampling about 10 million times faster than the fastest supercomputer at that time.

A new demonstration involving hundreds of entangled atoms tests Schrödinger’s interpretation of Einstein, Rosen, and Podolsky’s classic thought experiment.

In 1935, Einstein, Podolsky, and Rosen (EPR) presented an argument that they claimed implies that quantum mechanics provides an incomplete description of reality [1]. The argument rests on two assumptions. First, if the value of a physical property of a system can be predicted with certainty, without disturbance to the system, then there is an “element of reality” to that property, meaning it has a value even if it isn’t measured. Second, physical processes have effects that act locally rather than instantaneously over a distance. John Bell subsequently proposed a way to experimentally test these “local realism” assumptions [2], and so-called Bell tests have since invalidated them for systems of a few small particles, such as electrons or photons [3].

An unusual kind of superconductor harbors magnetic vortices that researchers predict should be readily observable thanks to the striped configurations they adopt.

In a nematic superconductor, electron pairs are bound more strongly in one, spontaneously chosen, lattice direction than in the others. This rotational symmetry breaking of the pairs’ wave function is just one of this type of superconductor’s unusual properties. A leading candidate to exhibit nematic superconductivity, copper-doped bismuth selenide, is also predicted to sustain surface charge-carrying quasiparticles known as Majorana fermions, which researchers think could be used for superconducting quantum technologies. What’s more, nematic superconductors harbor topological solitons known as skyrmions, whose complexity gives them many ways to arrange themselves and whose small size and low energy have attracted interest for data storage technologies. Now Thomas Winyard of the University of Edinburgh, UK, and colleagues have calculated the various skyrmion configurations that could arise in a nematic superconductor [1, 2].

The physicist Tony Skyrme came up with the concept of a skyrmion in 1961 when working on a particle physics problem. In the 2000s, the quasiparticle was then linked to condensed-matter systems when it was discovered that quasiparticles could also be used to explain magnetic vortices in certain thin films.

Is the Quantum for Bio Program Director, at Wellcome Leap (https://wellcomeleap.org/our-team/elicakyoseva/), a $40M +$10M program focused on identifying, developing, and demonstrating biology and healthcare applications that will benefit from the quantum computers expected to emerge in the next 3–5 years.

Wellcome Leap was established with $300 million in initial funding from the Wellcome Trust, the UK charitable foundation, to accelerate discovery and innovation for the benefit of human health, focusing on build bold, unconventional programs and fund them at scale—specifically programs that target global human health challenges, with the goal of achieving breakthrough scientific and technological solutions.

Dr. Kyoseva completed her Ph.D. in Quantum Optics and Information, at Sofia University in Bulgaria, and then moved to the Center for Quantum Technologies in Singapore as a postdoc. Three years later, she established her own research group in Quantum Engineering at the Singapore University of Tech & Design and subsequently spent a year at MIT (Cambridge, USA) as a Research Fellow in the Nuclear Science and Engineering Department doing research on quantum control and engineering.

In 2016, Dr. Kyoseva was awarded a Marie Curie fellowship for research excellence by the European Commission with which she relocated to Tel Aviv, Israel and continued her research in robust control methods for Quantum Computing at Tel Aviv University. Since the beginning of 2020 she served as an Entrepreneur in Residence and Advisor at a venture capital firm and was instrumental for their investments in quantum computing startups. In September 2020, she took a senior role with Boehringer Ingelheim to develop applications of quantum algorithms to the drug discovery process working on the cutting edge of applied quantum computing technologies to improve the lives of both humans and animals.

“” This achievement connects synchrotron X-rays with quantum tunneling process to detect X-ray signature of an individual atom and opens many exciting research directions including the research on quantum and spin (magnetic) properties of just one atom using synchrotron X-rays,” Hla said.”


A team of scientists from Ohio University, Argonne National Laboratory, the University of Illinois-Chicago, and others, led by Ohio University Professor of Physics, and Argonne National Laboratory scientist, Saw Wai Hla, have taken the world’s first X-ray SIGNAL (or SIGNATURE) of just one atom. This groundbreaking achievement could revolutionize the way scientists detect the materials.

There is a lot of speculation about the end of the universe. Humans love a good ending after all. We know that the universe started with the Big Bang and it has been going for almost 14 billion years. But how the curtain call of the cosmos occurs is not certain yet. There are, of course, hypothetical scenarios: the universe might continue to expand and cool down until it reaches absolute zero, or it might collapse back onto itself in the so-called Big Crunch. Among the alternatives to these two leading theories is “vacuum decay”, and it is spectacular – in an end-of-everything kind of way.

While the heat death hypothesis has the end slowly coming and the Big Crunch sees a reversal of the universe’s expansion at some point in the future, the vacuum decay requires that one spot of the universe suddenly transforms into something else. And that would be very bad news.

There is a field that spreads across the universe called the Higgs field. Interaction between this field and particles is what gives the particles mass. A quantum field is said to be in its vacuum state if it can’t lose any energy but we do not know if that’s true for the Higgs field, so it’s possible that the field is in a false vacuum at some point in the future. Picture the energy like a mountain. The lowest possible energy is a valley but as the field rolled down the slopes it might have encountered a small valley on the side of that mountain and got stuck there.

Neil Gershenfeld is the director of the MIT Center for Bits and Atoms. Please support this podcast by checking out our sponsors:
- LMNT: https://drinkLMNT.com/lex to get free sample pack.
- NetSuite: http://netsuite.com/lex to get free product tour.
- BetterHelp: https://betterhelp.com/lex to get 10% off.

EPISODE LINKS:
Neil’s Website: http://ng.cba.mit.edu/
MIT Center for Bits and Atoms: https://cba.mit.edu/
Fab Foundation: https://fabfoundation.org/
Fab Lab community: https://fablabs.io/
Fab Academy: https://fabacademy.org/
Fab City: https://fab.city/

PODCAST INFO:
Podcast website: https://lexfridman.com/podcast.
Apple Podcasts: https://apple.co/2lwqZIr.
Spotify: https://spoti.fi/2nEwCF8
RSS: https://lexfridman.com/feed/podcast/
Full episodes playlist: https://www.youtube.com/playlist?list=PLrAXtmErZgOdP_8GztsuKi9nrraNbKKp4
Clips playlist: https://www.youtube.com/playlist?list=PLrAXtmErZgOeciFP3CBCIEElOJeitOr41

OUTLINE:

What happened before the Big Bang? In two of our previous films we examined cyclic cosmologies and time travel universe models. Specially, the Gott and Li Model https://www.youtube.com/watch?v=79LciHWV4Qs) and Penrose’s Conformal Cyclic Cosmology https://www.youtube.com/watch?v=FVDJJVoTx7s). Recently Beth Gould and Niayesh Afshordi of the Perimeter Institute for Theoretical Physics have fused these two models together to create a startling new vision of the universe. In this film they explain their new proposal, known as Periodic Time Cosmology.

0:00 Introduction.
0:45 NIayesh’s story.
1:15 Beth’s story.
2:25 relativity.
3:26 Gott & Li model.
6:23 origins of the PTC model.
8:17 PTC periodic time cosmology.
10:55 Penrose cyclic model.
13:01 Sir Roger Penrose.
14:19 CCC and PTC
15:45 conformal rescaling and the CMB
17:28 assumptions.
18:41 why a time loop?
20:11 empirical test.
23:96 predcitions.
26:19 inflation vs PTC
30:22 gravitational waves.
31:40 cycles and the 2nd law.
32:54 paradoxes.
34:08 causality.
35:17 immortality in a cyclic universe.
38:02 eternal return.
39:21 quantum gravity.
39:57 conclusion.

Elizabeth Gould has asked to make this clarification in the written text ” “Despite the availability of infinite time in the periodic time model, this doesn’t lead to thermalization in a typical time-evolution scenario, and therefore doesn’t, strictly speaking, solve the problem related to thermalization in the power spectrum. The reason for this is that, unlike bounce models with a net expansion each cycle, our model has an effective contraction during the conformal phases. Periodic time, therefore, has a unique character in which it reuses the power spectrum from the previous cycles, which is confined to a given form due to the constraints of the system, rather than removing the old power spectrum and needing to produce a new one.”