Toggle light / dark theme

Newly achieved precise control over light emitted from incredibly tiny sources, a few nanometers in size, embedded in two-dimensional (2D) materials could lead to remarkably high-resolution monitors and advances in ultra-fast quantum computing, according to an international team led by researchers at Penn State and Université Paris-Saclay.

In a recent study, published in ACS Photonics, scientists worked together to show how the light emitted from 2D materials can be modulated by embedding a second 2D material inside them—like a tiny island of a few nanometers in size—called a nanodot. The team described how they achieved the confinement of nanodots in two dimensions and demonstrated that, by controlling the nanodot size, they could change the color and frequency of the emitted light.

“If you have the opportunity to have localized from these materials that are relevant in quantum technologies and electronics, it’s very exciting,” said Nasim Alem, Penn State associate professor of materials science and engineering and co-corresponding author on the study. “Envision getting light from a zero-dimensional point in your field, like a dot in space, and not only that, but you can also control it. You can control the frequency. You can also control the wavelength where it comes from.”

In a material made of two thin crystal layers that are slightly twisted with respect to each other, researchers at ETH have studied the behavior of strongly interacting electrons. Doing so, they found a number of surprising properties.

Many modern technologies are based on special materials, such as the semiconductors that are important for computers, inside of which can move more or less freely. Exactly how free those electrons are is determined by their quantum properties and the crystal structure of the material. Most of the time they move independently of each other. Under certain conditions, however, between the electrons can give rise to particular phenomena. Superconductors, in which electrons pair up to conduct electrical current without resistance, are a well-known example.

At the Institute for Quantum Electronics in Zurich, ETH-professor Ataç Imamoğlu investigates materials with strongly interacting electrons. He wants to understand the behavior of the electrons in those materials better and looks for unexpected properties that might be interesting for future applications. In a “twisted” material, he and his collaborators have now made some surprising discoveries regarding the behavior of electrons, as they report in the scientific journal Nature.

A team of researchers has developed the first chip-scale titanium-doped sapphire laser—a breakthrough with applications ranging from atomic clocks to quantum computing and spectroscopic sensors.

The work was led by Hong Tang, the Llewellyn West Jones, Jr. Professor of Electrical Engineering, Applied Physics & Physics. The results are published in Nature Photonics.

When the titanium-doped laser was introduced in the 1980s, it was a major advance in the field of lasers. Critical to its success was the material used as its gain medium—that is, the material that amplifies the laser’s energy. Sapphire doped with titanium ions proved to be particularly powerful, providing a much wider laser emission bandwidth than conventional semiconductor lasers. The innovation led to fundamental discoveries and countless applications in physics, biology, and chemistry.

“The Future Already Happened“
What if the past isn’t fixed? Scientists have just proven that the future can influence the past, shattering everything we thought we knew about time and reality. From mind-bending quantum experiments to the shocking science of precognition, this video explores the hidden connections between time, consciousness, and the universe.

✅GET YOUR FREE NUMEROLOGY READING HERE:
https://bit.ly/full-numerology-reading.

Time Stamps:

0:00 — Mind-Blowing Experiments.
1:43 — Presentiment.
2:26 — Precognition.
5:12 — J.W. Dunne’s Precognitive Dream Protocol.
7:33 — Feeling The Future.
10:00 — Remote Viewing.
12:18 — Free Will & Retrocausality.
14:43 — Lucid Dreaming.

►Copyright ©:
Script — BE INSPIRED
Narration — BE INSPIRED
Footage is licensed through Videoblocks, Artgrid, and Envato.
Music: Epidemic Sound / Audiojungle / Envato Elements.
Interviews / Video References were used under FAIR USE LAW.

© BE INSPIRED CHANNEL — All rights reserved.

Scientists have developed a quantum computer that uses light to process data, paving the way for quantum computers that can operate in a networked environment at room temperature.

The new system, called Aurora, is the first photonic quantum computer in the world that can operate at scale using several modules interconnected through fiber optic cables. The system presents a solution to some of quantum computing’s biggest problems — namely operation at scale, fault tolerance and error correction, Xanadu representatives say.

The speed of light is often regarded as the ultimate cosmic speed limit, but researchers have now managed to slow it down dramatically—to just 61 kilometers per hour. This was achieved by using a Bose-Einstein condensate (BEC), a peculiar quantum state of matter that allows light to be slowed or even stopped entirely. This discovery, which builds on decades of research, has implications for quantum physics, computing, and information storage.

The Quantum Jelly Effect In everyday conditions, light moves at 299,792,458 meters per second in a vacuum, and its speed decreases slightly when passing through materials like glass or water. However, these reductions are relatively small. In contrast, when light travels through a Bose-Einstein condensate, it can be slowed to a near standstill.

A Bose-Einstein condensate is an exotic state of matter, first predicted by Albert Einstein and Satyendra Nath Bose, that occurs when a gas is cooled to temperatures just above absolute zero. Under these conditions, the atoms behave as a single quantum entity, exhibiting superfluidity and interacting with light in ways not seen in ordinary materials.

For over a century, physicists have grappled with one of the most profound questions in science: How do the rules of quantum mechanics, which govern the smallest particles, fit with the laws of general relativity, which describe the universe on the largest scales?

The optical lattice clock, one of the most precise timekeeping devices, is becoming a powerful tool used to tackle this great challenge. Within an optical lattice clock, atoms are trapped in a “lattice” potential formed by laser beams and are manipulated with precise control of quantum coherence and interactions governed by .

Simultaneously, according to Einstein’s laws of general relativity, time moves slower in stronger gravitational fields. This effect, known as gravitational redshift, leads to a tiny shift of atoms’ internal energy levels depending on their position in gravitational fields, causing their “ticking”—the oscillations that define time in optical lattice clocks—to change.

Many physicists and engineers have recently been trying to demonstrate the potential of quantum computers for tackling some problems that are particularly demanding and are difficult to solve for classical computers. A task that has been found to be challenging for both quantum and classical computers is finding the ground state (i.e., lowest possible energy state) of systems with multiple interacting quantum particles, called quantum many-body systems.

When one of these systems is placed in a thermal bath (i.e., an environment with a fixed temperature that interacts with the systems), it is known to cool down without always reaching its . In some instances, a can get trapped at a so-called local minimum; a state in which its energy is lower than other neighboring states but not at the lowest possible level.

Researchers at California Institute of Technology and the AWS Center for Quantum Computing recently showed that while finding the local minimum for a system is difficult for classical computers, it could be far easier for quantum computers.

A small international team of nanotechnologists, engineers and physicists has developed a way to force laser light into becoming a supersolid. Their paper is published in the journal Nature. The editors at Nature have published a Research Briefing in the same issue summarizing the work.

Supersolids are entities that exist only in the quantum world, and, up until now, they have all been made using . Prior research has shown that they have zero viscosity and are formed in crystal-like structures similar to the way atoms are arranged in salt crystals.

Because of their nature, supersolids have been created in extremely cold environments where the can be seen. Notably, one of the team members on this new effort was part of the team that demonstrated more than a decade ago that light could become a fluid under the right set of circumstances.