Toggle light / dark theme

Physicists at the University of Regensburg have found a way to manipulate the quantum state of individual electrons using a microscope with atomic resolution. The results of the study have now been published in the journal Nature.

We, and everything around us, consist of . The molecules are so tiny that even a speck of dust contains countless numbers of them. It is now routinely possible to precisely image such molecules with an , which works quite differently from an optical microscope: it is based on sensing tiny forces between a tip and the molecule under study.

Using this type of microscope, one can even image the internal structure of a molecule. Although one can watch the molecule this way, this does not imply knowing all its different properties. For instance, it is already very hard to determine which kind of atoms the molecule consists of.

A radical theory that consistently unifies gravity and quantum mechanics while preserving Einstein’s classical concept of spacetime is announced today in two papers published simultaneously by UCL (University College London) physicists.

Modern physics is founded upon two pillars: quantum theory on the one hand, which governs the smallest particles in the universe, and Einstein’s theory of general relativity on the other, which explains gravity through the bending of spacetime. But these two theories are in contradiction with each other and a reconciliation has remained elusive for over a century.

Challenging the status quo: a new theoretical approach.

The field of attosecond physics was established with the mission of exploring light–matter interactions at unprecedented time resolutions. Recent advancements in this field have allowed physicists to shed new light on the quantum dynamics of charge carriers in atoms and molecules.

A technique that has proved particularly valuable for conducting research in this field is RABBITT (i.e., the Reconstruction of Attosecond Beating By Interference of Two-photon Transitions). This promising tool was initially used to characterize , as part of a research effort that won this year’s Nobel Prize, yet it has since also been employed to measure other ultrafast physical phenomena.

Researchers at East China Normal University and Queen’s University Belfast recently built on the RABBITT technique to distinctly measure individual contributions in photoionization. Their paper, published in Physical Review Letters, introduces a new highly promising method for conducting attosecond physics research.

With a processor that has fewer qubits, IBM has improved error correction, paving the way for the use of these processors in real life.


IBM has unveiled its much-awaited 1,000+ qubit quantum processor Condor, alongside a utility-scale processor dubbed IBM Quantum Heron at its Quantum Summit in New York. The latter is the first in the series of utility-scale quantum processors that IBM took four years to build, the company said in a press release.

Quantum computers, considered the next frontier of computing, have locked companies big and small in a race to build the platform that everybody would want to use to solve complex problems in medicine, physics, mathematics, and many more.

In a groundbreaking announcement, physicists from University College London (UCL) have presented a radical theory that unifies the realms of gravity and quantum mechanics while preserving the classical concept of spacetime, as outlined by Einstein.

This innovative approach, detailed in two simultaneously published papers, challenges over a century of scientific consensus and proposes a revolutionary perspective on the fundamental nature of our universe.

Modern physics rests on two contradictory pillars: quantum theory, which rules the microscopic world, and Einstein’s theory of general relativity, explaining gravity through spacetime curvature. These theories, despite their individual successes, have remained irreconcilable, creating a significant rift in our understanding of the universe.

Quantum computers promise to solve some problems exponentially faster than classical computers, but there are only a handful of examples with such a dramatic speedup, such as Shor’s factoring algorithm and quantum simulation. Of those few examples, the majority of them involve simulating physical systems that are inherently quantum mechanical — a natural application for quantum computers. But what about simulating systems that are not inherently quantum? Can quantum computers offer an exponential advantage for this?

In “Exponential quantum speedup in simulating coupled classical oscillators”, published in Physical Review X (PRX) and presented at the Symposium on Foundations of Computer Science (FOCS 2023), we report on the discovery of a new quantum algorithm that offers an exponential advantage for simulating coupled classical harmonic oscillators. These are some of the most fundamental, ubiquitous systems in nature and can describe the physics of countless natural systems, from electrical circuits to molecular vibrations to the mechanics of bridges. In collaboration with Dominic Berry of Macquarie University and Nathan Wiebe of the University of Toronto, we found a mapping that can transform any system involving coupled oscillators into a problem describing the time evolution of a quantum system. Given certain constraints, this problem can be solved with a quantum computer exponentially faster than it can with a classical computer.

Scientists were reportedly able to use artificial intelligence (AI) to reconstruct images solely from people’s brain activity with over 75% accuracy for the first time ever.

According to Japanese newspaper The Mainichi, recreating images from brain activity is usually only possible when a subject is actually seeing the images with their own eyes, or when the type of images, such as faces, letters or simple figures, were specified.

However, a team of researchers at the National Institutes for Quantum Science and Technology (QST) in Japan have now demonstrated that it’s possible to accurately reconstruct complex images with AI — based almost solely from a person’s thoughts.