Toggle light / dark theme

Recent Breakthroughs Accelerate The Race For Quantum Computing

The race toward scalable quantum computing has reached a pivotal moment, with major players like Microsoft, Google, and IBM pushing forward with breakthroughs. Microsoft’s recent announcement of its Majorana 1 chip marks a significant milestone, while Google’s Willow chip and IBM’s long-term quantum roadmap illustrate the industry’s diverse approaches to achieving fault-tolerant quantum systems. As the quantum computing industry debates the timeline for practical implementation, breakthroughs like Majorana 1 and Willow suggest that major advancements may be closer than previously thought. At the same time, skepticism remains, with industry leaders such as Nvidia CEO Jensen Huang cautioning that meaningful commercial quantum applications could still be decades away.

Microsoft is redefining quantum computing with its new Majorana 1 chip, a significant breakthrough in the pursuit of scalable and fault-tolerant quantum systems. This quantum processor is built on a novel topological architecture that integrates Majorana particles, exotic quantum states that enhance qubit stability and reduce errors. Unlike conventional qubit technologies, which require extensive error correction, Microsoft’s approach aims to build fault tolerance directly into the hardware, significantly improving the feasibility of large-scale quantum computing. Satya Nadella, Microsoft’s CEO, highlighted the significance of this milestone in his LinkedIn post, We’ve created an entirely new state of matter, powered by a new class of materials, topoconductors. This fundamental leap in computing enables the first quantum processing unit built on a topological core.

Investor Says Quantum Computing Is Underestimated, Likely to Commercialize in a Few Years

While many experts in the quantum industry are concerned about the hype surrounding the technology, some are suggesting quantum tech might not be hyped enough. According to one respected deep-tech investor, quantum computing is still underestimated and is only a few years away from commercial use.

Karthee Madasamy, founder of Silicon Valley venture fund MFV Partners, told Nikkei Asia he sees strong momentum in quantum computing, likening it to how ChatGPT surprised the world.

“People are going to underestimate [quantum computing] … It’s like ChatGPT,” he told Nikkei Asia. “Until ChatGPT, nobody was thinking about natural language … Now everybody’s like, ‘It’s going to kill this world.’”

New Experiment To Look for Quantum Noise of Space Itself

Check out the new data science course on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

Physicists are stuck on trying to figure out why gravity and quantum mechanics don’t get along. For almost 100 years now, they have been looking for a theory of quantum gravity to solve the problem. But one of the most general expectations of a quantization of gravity is that space also has quantum fluctuations. And a team of researchers from Caltech now says they’ve got a tabletop experiment which could find those fluctuations. Could this solve the problem? Let’s take a look.

This video comes with a quiz which you can take here: https://quizwithit.com/start_thequiz/.… Check out my new quiz app ➜ http://quizwithit.com/ 💌 Support me on Donorbox ➜ https://donorbox.org/swtg 📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/ 👉 Transcript with links to references on Patreon ➜ / sabine 📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle… 👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl… 🔗 Join this channel to get access to perks ➜ / @sabinehossenfelder 🖼️ On instagram ➜ / sciencewtg #science #sciencenews #physics.

🤓 Check out my new quiz app ➜ http://quizwithit.com/
💌 Support me on Donorbox ➜ https://donorbox.org/swtg.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
👉 Transcript with links to references on Patreon ➜ / sabine.
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
🖼️ On instagram ➜ / sciencewtg.

#science #sciencenews #physics

Quantum Holograms Transform Light Into Unbreakable Security

Quantum entanglement, one of the strangest and most powerful aspects of physics, has just been taken to a new level with the use of metasurfaces.

Researchers have discovered a way to create quantum holograms, where entangled photons encode intricate information with unprecedented precision. By leveraging the properties of metasurfaces, they demonstrated control over entangled holographic letters, opening doors to secure quantum communication and even anti-counterfeiting technology.

Unlocking the mysteries of quantum entanglement.

Sabine is Going to Hate This… But I Have Proof!

Please join my mailing list here 👉 https://briankeating.com/list to win a meteorite 💥
Sabine (@SabineHossenfelder) argues that superdeterminism eliminates free will, challenging the idea of causal choice and possibly undermining science if the laws of physics govern all phenomena. However, inspired by daily life experiences in Southern California, I present a defense of indeterminism, countering the claim that everything is predetermined, while also exploring the ideas of cosmologists Raphael Bousso and Alan Guth.

Sabine Hossenfelder, a theoretical physicist, has argued in favor of superdeterminism, a theory that suggests the universe is deterministic and that our choices are predetermined.

Does Superdeterminism save Quantum Mechanics? Or does it kill free will and destroy science? https://www.youtube.com/watch?v=ytyjgIyegDI

According to her, the apparent randomness in quantum mechanics is an illusion, and the universe is actually a predetermined, clockwork-like system. She claims that if we knew enough about the initial conditions of the universe, we could predict every event, including human decisions.

Hossenfelder’s argument relies on the idea that the randomness in quantum mechanics is not fundamental, but rather a result of our lack of knowledge about the underlying variables. She suggests that if we could access these “hidden variables,” we would find that the universe is deterministic. However, this argument is flawed.

For example, consider the double-slit experiment, where particles passing through two slits create an interference pattern on a screen. Hossenfelder would argue that the particles’ behavior is predetermined, and that the apparent randomness is due to our lack of knowledge about the initial conditions. However, this ignores the fact that the act of observation itself can change the outcome of the experiment, a phenomenon known as wave function collapse.

/* */