Menu

Blog

Archive for the ‘quantum physics’ category: Page 166

Mar 9, 2024

Researchers’ approach may protect quantum computers from attacks

Posted by in categories: quantum physics, robotics/AI, security

Quantum computers, which can solve several complex problems exponentially faster than classical computers, are expected to improve artificial intelligence (AI) applications deployed in devices like autonomous vehicles; however, just like their predecessors, quantum computers are vulnerable to adversarial attacks.

A team of University of Texas at Dallas researchers and an industry collaborator have developed an approach to give quantum computers an extra layer of protection against such attacks. Their solution, Quantum Noise Injection for Adversarial Defense (QNAD), counteracts the impact of attacks designed to disrupt inference—AI’s ability to make decisions or solve tasks.

The team will present research that demonstrates the method at the IEEE International Symposium on Hardware Oriented Security and Trust held May 6–9 in Washington, D.C.

Mar 9, 2024

New superconducting device could boost quantum tech

Posted by in categories: computing, quantum physics

Superconducting circuits, which conduct electricity without resistance, are among the most promising technologies for quantum computing and ultrafast logic circuits. However, finding a practical way to work with these materials that require extremely cold temperatures has been a challenge.

In a step toward that goal, a team of researchers led by Prof. Hong Tang developed and successfully demonstrated a device that presents a viable solution in transferring a very weak signal from a computing device stored at cryogenic temperatures to room temperature electronics to achieve a fast data transfer with very low energy consumption. The results are published in Nature Photonics.

The practical use of superconducting circuits requires connecting them to room temperature electronics. But doing so has largely relied on coaxial cables, which have a limited bandwidth and limited thermal conductivity – two factors that negate the benefits of superconducting circuits.

Mar 9, 2024

Researchers discover tunable room-temperature nonlinear Hall effect in bismuth thin films

Posted by in categories: computing, quantum physics

A research team from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the University of Salerno in Italy has discovered that thin films of elemental bismuth exhibit the so-called non-linear Hall effect, which could be applied in technologies for the controlled use of terahertz high-frequency signals on electronic chips.

Bismuth combines several advantageous properties not found in other systems to date, as the team reports in Nature Electronics. In particular, the quantum effect is observed at . The thin-layer films can be applied even on plastic substrates and could therefore be suitable for modern high-frequency technology applications.

“When we apply a current to certain materials, they can generate a voltage perpendicular to it. We physicists call this phenomenon the Hall effect, which is actually a unifying term for effects with the same impact, but which differ in the underlying mechanisms at the electron level. Typically, the Hall voltage registered is linearly dependent on the applied current,” says Dr. Denys Makarov from the Institute of Ion Beam Physics and Materials Research at HZDR.

Mar 9, 2024

Study observes a room-temperature nonlinear Hall effect in elemental bismuth thin films

Posted by in categories: internet, quantum physics

After the advent of 5G, engineers have been trying to devise techniques to further enhance wireless communication technology. To increase these systems’ data transmission rate, they will ultimately need to extend their carrier frequency beyond 100 gigahertz, reaching the terahertz range.

Existing devices and technologies, however, have proved to be unable to achieve such high carrier frequencies. One proposed solution to reach this goal entails the use of some quantum materials that exhibit the so-called non-linear Hall effect.

Researchers at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e. V. and University of Salerno have identified a promising material for the development of next generation wireless communication systems, namely thin film elemental bismuth. Their paper, published in Nature Electronics, shows that this material exhibits a room-temperature nonlinear Hall effect.

Mar 9, 2024

A New Hall Effect from Quantum Geometry

Posted by in categories: quantum physics, space

Throughout many branches of physics, a connection can be drawn between geometry and dynamics. In general relativity, for example, the motion of stars and planets is governed by the geometry of spacetime. In condensed matter, the motion of electrons in solids is influenced by the so-called quantum geometry, which describes how the electronic wave function evolves in momentum space. The quantum geometry can explain a wide range of observed phenomena, such as topological phases and quantum Hall effects, but it can also lead researchers to new electromagnetic responses. Guided by quantum-geometry predictions, Lujunyu Wang from Peking University and colleagues present experimental evidence of a new Hall effect, the magneto-nonlinear Hall effect, which is proportional to both an in-plane electric field and an in-plane magnetic field [1] (Fig. 1). The effect, which was isolated in a magnet with triangular symmetry, offers a new way to probe in the quantum geometry of materials.

Quantum geometry is a representation of the phase of the Bloch wave functions, which describe electronic behavior in a periodic potential. In the case of a two-level system, this phase can be represented by a unit vector in the momentum space of the electrons. In certain materials, this vector rotates as the momentum changes, an effect that can be characterized by two fundamental geometrical properties: the “quantum metric” and the “Berry curvature.” These two aspects of quantum geometry can describe many phenomena including surface currents in topological insulator and anomalous Hall effects in which the transverse Hall current occurs in the absence of an external magnetic field.

Recently, researchers have uncovered a connection between quantum geometry and nonlinear electromagnetic effects [210]. Here, the nonlinearity is a higher-order response to the input electromagnetic fields. Nonlinear electrical transport is the foundation of applications such as rectification and wave mixing. Classically, the most well-known nonlinear device is a p-n junction. In quantum materials, nonlinear transport suggests novel device applications but also provides a powerful probe of the quantum geometry of the conduction electrons.

Mar 9, 2024

A Quantum Gas Microscope with Depth Perception

Posted by in categories: particle physics, quantum physics

Researchers have developed a quantum gas microscope that can pinpoint the horizontal and vertical positions of atoms arranged in a lattice.

Mar 9, 2024

Quantum Gravity Unveiled — Scientists Crack the Cosmic Code That Baffled Einstein

Posted by in categories: particle physics, quantum physics

Physicists successfully measure gravity in the quantum world, detecting weak gravitational pull on a tiny particle with a new technique that uses levitating magnets, putting scientists closer to solving mysteries of the universe.

Scientists are a step closer to unraveling the mysterious forces of the universe after working out how to measure gravity on a microscopic level.

Experts have never fully understood how the force discovered by Isaac Newton works in the tiny quantum world.

Mar 9, 2024

Breaking Barriers in Quantum Research: Magnesium-Coated Tantalum Unveiled

Posted by in categories: computing, quantum physics

Scientists at the DOE’s Brookhaven National Laboratory have discovered that coating tantalum with magnesium significantly enhances its properties as a superconducting material for quantum computing. This coating prevents oxidation, increases purity, and improves the superconducting transition temperature of tantalum, offering promising advancements for the development of qubits and the future of quantum computing.

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have discovered that adding a layer of magnesium improves the properties of tantalum, a superconducting material that shows great promise for building qubits, the basis of quantum computers.

As described in a paper just published in the journal Advanced Materials, a thin layer of magnesium keeps tantalum from oxidizing, improves its purity, and raises the temperature at which it operates as a superconductor. All three may increase tantalum’s ability to hold onto quantum information in qubits.

Mar 9, 2024

Scientists propose new scheme for the quantum battery using waveguides

Posted by in categories: energy, quantum physics

A new study by researchers at Lanzhou University and Hubei University proposes a quantum battery (QB) charging scheme based on a rectangular hollow metal waveguide. This approach allows them to overcome environment-induced decoherence and charging distance limitations. The findings are published in Physical Review Letters.

The demand and supply for batteries continue to grow with a focus on enhancing energy storage, longevity, and charging capabilities. On this front, scientists are now developing quantum batteries that leverage principles of quantum mechanics to store and supply energy.

The aim is to use fundamental principles of quantum mechanics such as entanglement and coherence to overcome the constraints of classical physics, thereby achieving stronger charging power, higher charging capacity, and larger work extraction compared to classical counterparts.

Mar 9, 2024

Multiparticle nanostructures for building better quantum technologies

Posted by in categories: nanotechnology, quantum physics

In Nature Physics, the LSU Quantum Photonics Group offers fresh insights into the fundamental traits of surface plasmons, challenging the existing understanding. Based on experimental and theoretical investigations conducted in Associate Professor Omar Magaña-Loaiza’s laboratory, these novel findings mark a significant advancement in quantum plasmonics, possibly the most noteworthy in the past decade.

While prior research in the field has predominantly focused on the collective behaviors of plasmonic systems, the LSU group adopted a distinct approach. By viewing plasmonic waves as a puzzle, they were able to isolate multiparticle subsystems, or break down the puzzle into pieces. This allowed the team to see how different pieces work together and revealed a different picture, or in this case, new behaviors for .

Plasmons are waves that move along the surface of metals when light is coupled to charge oscillations. Much like tossing pebbles into water generates ripples, plasmons are “ripples” traveling along metal surfaces. These minute waves operate on a nanometer scale, rendering them crucial in fields such as nanotechnology and optics.