Menu

Blog

Archive for the ‘quantum physics’ category: Page 165

Apr 14, 2023

Superstring Theory and Higher Dimensions: Bridging Einstein’s Relativity and Quantum Mechanics

Posted by in categories: cosmology, quantum physics

A team of researchers at Kyoto University is exploring the use of higher dimensions in de Sitter space to explain gravity in the early universe. By developing a method to compute correlation functions among fluctuations, they aim to bridge the gap between Einstein’s theory of general relativity and quantum mechanics. This could potentially validate superstring theory and enable practical calculations about the early universe’s subtle changes. Although initially tested in a three-dimensional universe, the analysis may be extended to a four-dimensional universe for real-world applications.

Having more tools helps; having the right tools is better. Utilizing multiple dimensions may simplify difficult problems — not only in science fiction but also in physics — and tie together conflicting theories.

For example, Einstein’s theory of general relativity — which resides in the fabric of space-time warped by planetary or other massive objects — explains how gravity works in most cases. However, the theory breaks down under extreme conditions such as those existing in black holes and cosmic primordial soups.

Apr 13, 2023

Scientists Broke a Major Computer Design Barrier — And It Could Change Tech As We Know It

Posted by in categories: quantum physics, robotics/AI

Open-standard computer chip instructions could help speed up futuristic technology like autonomous cars and quantum computers.

Apr 13, 2023

Quantum Machine Learning over Infinite Dimensions

Posted by in categories: information science, quantum physics, robotics/AI

This could lead to chat gpt infinite ♾️ ✨️


Machine learning is a fascinating and exciting field within computer science. Recently, this excitement has been transferred to the quantum information realm. Currently, all proposals for the quantum version of machine learning utilize the finite-dimensional substrate of discrete variables. Here we generalize quantum machine learning to the more complex, but still remarkably practical, infinite-dimensional systems. We present the critical subroutines of quantum machine learning algorithms for an all-photonic continuous-variable quantum computer that can lead to exponential speedups in situations where classical algorithms scale polynomially. Finally, we also map out an experimental implementation which can be used as a blueprint for future photonic demonstrations.

Apr 13, 2023

New kind of quantum transport discovered in a device combining high-temperature superconductors and graphene

Posted by in categories: particle physics, quantum physics

Developing new quantum devices relies on controlling how electrons behave. A material called graphene, a single layer of carbon atoms, has fascinated researchers in recent years because its electrons behave as if they have no mass. For decades, scientists have also been interested in high-temperature superconductors: ceramic materials where electron interactions yield a macroscopic quantum state where electrons pair with each other. They do so at a temperature above the usual superconducting temperature of metals, which approaches absolute zero.

In a recent study published in Physical Review Letters, researchers from the SUNY Polytechnic Institute, Stony Brook University and the Brookhaven National Laboratory in the US, along with Aalto University in Finland, demonstrated a new electronic device that employs the unique ways in which electrons behave in these two materials— and high-temperature superconductors.

The experiment, led by Sharadh Jois and Ji Ung Lee from SUNY with the support of theoretical work done by Jose Lado, assistant professor at Aalto, demonstrated a new quantum device that combines both graphene and an unconventional high-temperature superconductor.

Apr 13, 2023

Quantum Computing and Simulations for Energy Applications: Review and Perspective

Posted by in categories: computing, quantum physics

Quantum computing and simulations are creating transformative opportunities by exploiting the principles of quantum mechanics in new ways to generate and process information. It is expected that a variety of areas ranging from day-to-day activities to making advanced scientific discoveries are going to benefit from such computations. Several early stage applications of quantum computing and simulation have already been demonstrated, and these preliminary results show that quantum computing and simulations could significantly accelerate the deployment of new technologies urgently needed to meet the growing demand for energy while safeguarding the environment.

Apr 13, 2023

Breakthrough in magnetic quantum material paves way for ultra-fast sustainable computers

Posted by in categories: computing, particle physics, quantum physics, sustainability

The discovery of new quantum materials with magnetic properties could pave the way for ultra-fast and considerably more energy-efficient computers and mobile devices. So far, these types of materials have been shown to work only in extremely cold temperatures. Now, a research team at Chalmers University of Technology in Sweden are the first to make a device made of a two-dimensional magnetic quantum material work in room temperature.

Today’s rapid IT expansion generates enormous amounts of digital data that needs to be stored, processed, and communicated. This comes with an ever-increasing need for energy—projected to consume more than 30% of the world’s total energy consumption by 2050. To combat the problem, the research community has entered a new paradigm in . The research and development of two-dimensional quantum materials, that form in sheets and are only a few atoms thick, have opened new doors for sustainable, faster and more energy-efficient data storage and processing in computers and mobiles.

The first atomically thin material to be isolated in a laboratory was graphene, a single atom-thick plane of graphite, that resulted in the 2010 Nobel Prize in Physics. And in 2017, two-dimensional materials with magnetic properties were discovered for the first time. Magnets play a fundamental role in our everyday lives, from sensors in our cars and home appliances to and memory technologies, and the discovery opened for new and more for a wide range of technology devices.

Apr 13, 2023

Towards Advanced Quantum Cognitive Computation

Posted by in categories: computing, neuroscience, quantum physics

This paper presents a relevant contribution towards an effective and convenient “Science 2.0” universal computational framework to achieve deeper cognitive intelligence at your fingertips and beyond. Computational information conservation theory CICT can help us to develop competitive applications and even advanced quantum cognitive computational application and systems towards deep computational cognitive intelligence. CICT new awareness of a discrete HG hyperbolic geometry subspace reciprocal space, RS of coded heterogeneous hyperbolic structures, underlying the familiar Q Euclidean direct space, DS system surface representation can open the way to holographic information geometry HIG to recover lost coherence information in system description and to develop advanced quantum cognitive systems. This paper is a relevant contribution towards an effective and convenient “Science 2.0” unive.

Apr 13, 2023

Strange New Explanation for Why Quantum World Collapses Into Reality

Posted by in categories: bitcoin, cosmology, cryptocurrencies, quantum physics

Get a Wonderful Person Tee: https://teespring.com/stores/whatdamath.
More cool designs are on Amazon: https://amzn.to/3wDGy2i.
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.

Hello and welcome! My name is Anton and in this video, we will talk about the suggestion that horizons from black holes and the expansion of the universe cause the quantum collapse into reality.
Links:
https://arxiv.org/pdf/2301.00026.pdf.
#quantumphysics #blackhole #universe.

Continue reading “Strange New Explanation for Why Quantum World Collapses Into Reality” »

Apr 13, 2023

Quantum Software Archives

Posted by in categories: computing, information science, quantum physics

Noisy intermediate-scale quantum algorithms, which run on noisy quantum computers, should be carefully designed to boost the output state fidelity. While several compilation approaches have been proposed to minimize circuit errors, they often omit the detailed circuit structure information that does not affect the circuit depth or the gate count. In the presence of spatial […]…

Apr 13, 2023

An unhackable quantum internet is being built in New York City

Posted by in categories: internet, quantum physics

Entangled photons of light have been sent through a loop of conventional optical fibre under the noisy New York streets – a starting point to building an unhackable quantum internet.

By Karmela Padavic-Callaghan