Toggle light / dark theme

Galactic Gravity’s Secret Role in Black Hole Collisions

Galactic gravity can dramatically impact wide binary stars, pushing them towards unexpected mergers or collisions.

The detection of gravitational waves.

Gravitational waves are distortions or ripples in the fabric of space and time. They were first detected in 2015 by the Advanced LIGO detectors and are produced by catastrophic events such as colliding black holes, supernovae, or merging neutron stars.

Researchers Unlock Fusion Mysteries with Novel Plasma Modeling, Propelling Nuclear Fusion Closer to Reality

Chinese researchers say that recent advancements in the burgeoning field of inertial confinement fusion are bringing us one step closer to making accessible nuclear fusion a reality.

The new findings, which incorporate innovative new modeling approaches, could open new avenues for the exploration of the mysteries surrounding high-energy-density physics, and could potentially offer a window toward understanding the physics of the early universe.

Harnessing controlled nuclear fusion as a potential source of clean energy has seen several significant advancements in recent years, and the recent research by a Chinese team, funded by the Strategic Priority Research Program of Chinese Academy of Sciences and published in Science Bulletin last month, signals the next wave of insights with what the team calls a “surprising observation” involving supra-thermal ions during observations of fusion burning plasmas at National Ignition Facility (NIF) at Lawrence Livermore National Laboratory in California.

Origins of black holes are revealed in their spin, gravitational wave data analysis finds

The size and spin of black holes can reveal important information about how and where they formed, according to new research.

The study, led by scientists at Cardiff University, tests the idea that many of the black holes observed by astronomers have merged multiple times within densely populated environments containing millions of stars.

The work is published in the journal Physical Review Letters.

Dark Energy Camera captures thousands of galaxies in stunning image

Focused on the Antlia Cluster — a dense assembly of galaxies within the Hydra–Centaurus Supercluster located around 130 million light-years from Earth — the image captures only a small portion of the 230 galaxies that make up the cluster, revealing a diverse array of galaxy types within as well as thousands of background galaxies beyond.

The Dark Energy Camera (DECam) was originally built for the Dark Energy Survey (DES), an international collaboration that began in 2013 and concluded its observations in 2019. Over the course of the survey, scientists mapped hundreds of millions of galaxies in an effort to understand the nature of dark energy — a mysterious force thought to drive the accelerated expansion of our universe. The universe’s acceleration challenges predictions made by Albert Einstein’s theory of general relativity, making dark energy one of the most perplexing mysteries in modern cosmology. Dark matter, meanwhile, refers to the mysterious and invisible substance that seems to hold galaxies together. This is another major conundrum scientists are still trying to fully penetrate.

Observations made of galaxy clusters have already helped scientists unravel some of the processes driving galaxy evolution as they search for clues about the history of our universe. In this sense, galaxy clusters act as “cosmic laboratories” where gravitational influence driven by dark matter and cosmic expansion driven by dark energy can be studied on incredibly large scales.

Nickel-58 nucleus may host elusive toroidal dipole excitations

Dipole toroidal modes are a unique set of excitations that are predicted to occur in various physical systems, ranging from atomic nuclei to metamaterials. What characterizes these excitations, or modes, is a toroidal distribution of currents, which results in the formation of vortex-like structures.

A classic example is smoke rings, the characteristic “rings” of smoke produced when puffs of smoke are released into the air through a narrow opening. Physics theories have also predicted the existence of toroidal dipole excitations in atomic nuclei, yet observing these modes has so far proved challenging.

Researchers at Technische Universitat Darmstadt, the Joint Institute for Nuclear Research, and other institutes recently identified candidates for toroidal dipole excitations in the nucleus 58 Ni for the very first time. Their paper, published in Physical Review Letters, opens new possibilities for the experimental observations of these elusive modes in .

Physicists explain a stellar stream’s distinctive features

Physicists have proposed a solution to a long-standing puzzle surrounding the GD-1 stellar stream, one of the most well-studied streams within the galactic halo of the Milky Way, known for its long, thin structure, and unusual spur and gap features.

The team of researchers, led by Hai-Bo Yu at the University of California, Riverside, proposed that a core-collapsing self-interacting (SIDM) “subhalo” — a smaller, satellite halo within the galactic halo — is responsible for the peculiar spur and gap features observed in the GD-1 stellar stream.

Study results appear in The Astrophysical Journal Letters in a paper titled “The GD-1 Stellar Stream Perturber as a Core-collapsed Self-interacting Dark Matter Halo.” The research could have significant implications for understanding the properties of dark matter in the universe.

Jacob Bernoulli

Jacob Bernoulli returned to Switzerland and taught mechanics at the University in Basel from 1,683, giving a series of important lectures on the mechanics of solids and liquids. Since his degree was in theology it would have been natural for him to turn to the Church, but although he was offered an appointment in the Church he turned it down. Bernoulli’s real love was for mathematics and theoretical physics and it was in these topics that he taught and researched. During this period he studied the leading mathematical works of his time including DescartesGéométrie and van Schooten’s additional material in the Latin edition. Jacob Bernoulli also studied the work of Wallis and Barrow and through these he became interested in infinitesimal geometry. Jacob began publishing in the journal Acta Eruditorum which was established in Leipzig in 1682.

In 1,684 Jacob Bernoulli married Judith Stupanus. They were to have two children, a son who was given his grandfather’s name of Nicolaus and a daughter. These children, unlike many members of the Bernoulli family, did not go on to become mathematicians or physicists.

You can see the Bernoulli family tree at THIS LINK.

/* */