In modern physics, emptiness is elusive and difficult to define, a new book shows.
Category: physics – Page 301
ADELPHI, Md. — A U.S. Army Research Laboratory biotechnology scientist recently published an editorial article on the future directions of synthetic biology research to meet critical Army needs in the Synthetic Biology edition of the Journal of the American Chemical Society.
In the publication, Dr. Bryn Adams, who works in ARL’s Bio-Technology Branch, highlights examples of robust, tractable bacterial species that can meet the demands of tomorrow’s state-of-the-art in synthetic biology.
“ACS Synthetic Biology is the premier synthetic biology journal in the world, with a wide readership of biologists, chemists, physicists, engineers and computer programmers,” Adams said. “A publication in this journal allows me to challenge the leaders in the field to meet a Department of Defense specific need — the need for new synthetic biology chassis organisms, or host cell, and toolkits to build complex circuits in them.”
On October 5th 2016, Ranga Dias and Isaac F. Silvera of Lyman Laboratory of Physics, Harvard University released the first experimental evidence that solid metallic hydrogen has been synthesized in the laboratory.
It took 495 GPa pressure to create. The sample is being held in the cryostat in liquid nitrogen.
If as predicted by theory the metallic hydrogen remains metastable when the extreme pressure is removed then the world will eventually be greatly changed.
In Brief:
- A Type IV civilization is a society that has managed to harness the energy of the entire universe.
- To get here, we would need to tap into energy sources unknown to us using strange laws of physics (laws that may or may not exist).
To measure the level of a civilization’s advancement, the Kardashev scale focuses on the amount of energy that a civilization is able to harness. Obviously, the amount of power available to a civilization is linked to how widespread the civilization is (you can’t harness the power of a star if you are confined to your home planet, and you certainly can’t harness the power of a galaxy if you can’t even get out of your solar system).
Here’s something to think about — physicists have proposed that the Universe could have a ‘self destruct’ mechanism, whereby everything in existence could disappear forever at any time, without warning.
Yep, as the video by Kurzgesagt — In a Nutshell above explains, if this self-destruct button turns out to be a real thing, it means we could be here one second, and gone the next, and we’d never even see it coming.
To understand this horrifying scenario, we first have to go through two of the fundamental principles of the Universe, the first being energy levels.
In August Hacked covered the rumor, then confirmed by NASA, that a paper by the NASA Eagleworks team, titled “Measurement of Impulsive Thrust from a Closed Radio Frequency Cavity in Vacuum,” to be published in December’s issue of American Institute of Aeronautics and Astronautics (AIAA)’s Journal of Propulsion and Power, a prestigious peer-reviewed scientific journal, will reveal promising experimental results on the controversial, “impossible” EmDrive propulsion system. Now, a NASA Eagleworks paper that could be the December paper, or a draft, has been leaked.
The EmDrive results are often dismissed because they appear to violate the fundamental conservation laws of physics, but possible models for the anomalous thrust effect have been proposed that, while belonging to highly imaginative areas of theoretical physics, could explain the controversial results without violating fundamental conservation laws.
The leaked paper was first shared in the NasaSpaceFlight forum, which is often the primary source of updates for all things EmDrive, and a Reddit thread that was then removed at the request of the Eagleworks authors, then posted with a commentary by tech news site Next Big Future. Of course, the paper could be removed again, and therefore those who want to read it before December might want to download it now.
Optalysys’s technology performs a mathematical function called the Fourier transform by encoding data, say a genome sequence, into a laser beam. The data can be manipulated by making light waves in the beam interfere with one another, performing the calculation by exploiting the physics of light, and generating a pattern that encodes the result. The pattern is read by a camera sensor and fed back into a conventional computer’s electronic circuits. The optical approach is faster because it achieves in a single step what would take many operations of an electronic computer.
The technology was enabled by the consumer electronics industry driving down the cost of components called spatial light modulators, which are used to control light inside projectors. The company plans to release its first product next year, aimed at high-performance computers used for processing genomic data. It will take the form of a PCI express card, a standard component used to upgrade PCs or servers usually used for graphics processors. Optalysys is also working on a Pentagon research project investigating technologies that might shrink supercomputers to desktop size, and a European project on improving weather simulations.
In 2015, Optalysis built a prototype that achieves a processing speed equivalent to 320 Gflops and it is incredibly energy efficient as it uses low-powered, cost effective components.
My answer probably won’t be popular, but it will be verifiable with licensed psychometricians. There is currently no job known that can’t be done by someone with an IQ of at least 135. That is the Wonderlic occupational cutoff for theoretical physics and philosophy, the two occupations with the highest IQ minimum at this stage. Secondly, when Nobel Prize winning scientists (literary and peace laureates were ignored) at my alma mater U.C. Berkeley were tested for IQ (it had something to do with a eugenics sperm donation program that ultimately floundered), it was discovered they didn’t necessarily have “genius IQs” (IQs at or beyond 140). For instance, Nobel Prize winning biologist James Watson only scored 130-ish (and that was a childhood score, so his adulthood score was likely lower). Yet, some of their peers without Nobel Prizes did have astronomical scores. Thirdly—and I’ll go into more detail below—IQ scores above 135 aren’t particularly reliable. So it very well could be one person scoring 135, 157, and 162 on different tests.
Consequently I would say the answer to all your example questions is: “It’s a crap shoot”
Some additional trivia that may be useful later on for you: Because of the way intelligence tests are normed, test scores beyond a certain range (some psychometricians say it is anything beyond 136 to anything beyond 145, depending on who you ask) aren’t particularly reliable. An adult with a score of +135 on legitimate IQ tests will likely routinely score that high on other legitimate IQ tests they take. But it may be 140 on one test, 165 on another, and so on. However, I can all but guarantee such a person will only mention their highest score from all the IQ tests they’ve taken (legitimate or not). When I hear someone go on and on about their 180 IQ or whatever, almost invariably it’s someone talking about their personal best, not their average, and probably not their average exclusive to IQ tests recognized by the APA as legitimate.