Toggle light / dark theme

Edward Bouchet

Edward Alexander Bouchet Yale College class of 1874Edward Alexander Bouchet (September 15, 1852 – October 28, 1918) was an African American physicist and educator and was the first African-American to earn a Ph.D. from any American university, completing his dissertation in physics at Yale in 1876. While completing his studies, Bouchet was also the first African American to be inducted in to Phi Beta Kappa for his stellar academic performance in his undergraduate studies. Bouchet’s original research focused on geometrical optics, and he wrote a dissertation entitled “On Measuring Refractive Indices.”

Unfortunately, after completing his dissertation, Bouchet was unable to find a university teaching position after college, probably because of racial discrimination. Bouchet moved to Philadelphia in 1876 and took a position at the Philadelphia’s Institute for Colored Youth (now Cheyney University of Pennsylvania), where he taught physics and chemistry for the next 26 years. Bouchet spent the next several years in several different teaching positions around the country. In 1916, Bouchet returned home to New Haven in poor health, and died in 1918 at age 66.

Dr. Bouchet’s impact on physics still resonates today around the world. The American Physical Society (APS Physics) confers the Edward A. Bouchet Award on some of the nation’s outstanding physicists for their contribution to physics. The Edward Bouchet Abdus Salam Institute was founded in 1988 by the late Nobel Laureate, Professor Abdus Salam under the direction of the founding Chairman Charles S. Brown. In 2005, Yale and Howard University founded the Edward A. Bouchet Graduate Honor Society in his name.

Elephant rescued from well with physics principle. ‘What an idea,’ says Twitter

How interesting. Very adorable.


A heartwarming rescue of a baby elephant with the help of physics is winning the Internet. A tweet by IFS officer Ramesh Pandey gives a glimpse of the rescue efforts made by people and officials in Gumla, Jharkhand.

According to the tweet, the forest department along with people from the nearby village rescued the elephant using the Archimedes principle. Officials and locals filled the well with water to help the elephant out. The elephant was rescued without any injury.

“Heartwarming pictures of how intelligently the team @dfogumla and villagers used Archimedes’s physical law of buoyancy to save an elephant calf who fell in a well. They pumped water into well to float the elephant to surface. Great work,” says the caption posted by Pandey.

Did Scientists Finally Solve the Impossible Physics Riddle?

A theoretical physicist in England has won a prestigious award for her work on the theory of massive gravity, which could explain why gravity hasn’t constrained the rapid expansion of the universe. The $100,000 award honors the work of Claudia de Rham, who has worked for 10 years on a way to turn massive gravity theory into something measurable.

Cosmologists have puzzled for decades about how to marry gravity with the speed at which the universe is expanding. Gravity as we understand it would work to hold the universe together, not let it race apart from itself into eventual oblivion. Enter the counterpart to dark matter, dark energy, which is what scientists call whatever is pulling the universe apart.

New Theory Could Solve Universe’s Biggest Paradox

She is now hopeful that advances in gravitational wave astronomy will make it possible to test the predictions of massive gravity theory within the decade.

“It would be amazing if it was shown to be right,” De Rham told The Guardian. “That may or may not happen, but what will happen is that we’ll have a much better fundamental understanding of gravity and that’s just something so deep, it’s one of the big questions today.”

READ MORE: Has physicist’s gravity theory solved ‘impossible’ dark energy riddle? [The Guardian].

NeoHuman Podcast: Evolutionary Cybernetics, Computational Physics and Consciousness Discussed

Evolutionary cyberneticist and digital philosopher Alex M. Vikoulov, author of The Syntellect Hypothesis, is interviewed by Agah Bahari, host and producer of NeoHuman podcast.

On this recent podcast, Alex Vikoulov, author of The Syntellect Hypothesis, is interviewed by NeoHuman podcaster Agah Bahari. Topics include evolutionary cybernetics, computational physics, consciousness, the simulation theory, the transcension hypothesis, the Global mind, AGI, VR, AR, psychedelics, technological singularities, transhumanism, Fermi Paradox, Digital Physics, objective reality, philosophy of mind, the extended mind hypothesis, absolute idealism, physics of time, the Omega Point cosmology, mind-uploading, synthetic telepathy, and more.

Watch a short intro here ↴.

Students calculate how to build Star Trek photon torpedoes

Circa 2016


Physics students at the University of Leicester have boldly gone where no student has gone before – by calculating one way to potentially build photon torpedoes seen in the Star Trek universe.

Announced to coincide with the release of Star Trek: Beyond, which opens in UK and US cinemas on 22 July, the students’ findings suggest that in order to function correctly, a photon torpedo could be made out of heavy metals such as lead or uranium, as metals with fewer protons would not have the necessary cascade length.

The students presented their findings in a short article for the Journal of Physics Special Topics, a peer-reviewed student journal run by the University’s Department of Physics and Astronomy. The student-run journal is designed to give students practical experience of writing, editing, publishing and reviewing scientific papers.

How (Relatively) Simple Symmetries Underlie Our Expanding Universe

Isaac Newton and other premodern physicists saw space and time as separate, absolute entities — the rigid backdrops against which we move. On the surface, this made the mathematics behind Newton’s 1687 laws of motion look simple. He defined the relationship between force, mass and acceleration, for example, as $latex \vec{F} = m \vec{a}$.

In contrast, when Albert Einstein revealed that space and time are not absolute but relative, the math seemed to get harder. Force, in relativistic terms, is defined by the equation $latex \vec {F} =\gamma (\vec {v})^{3}m_{0}\,\vec {a} _{\parallel }+\gamma (\vec {v})m_{0}\,\vec {a} _{\perp }$.

But in a deeper sense, in the ways that truly matter to our fundamental understanding of the universe, Einstein’s theory represented a major simplification of the underlying math.

/* */