Toggle light / dark theme

RIKEN launches international initiative with Fujitsu and NVIDIA for “FugakuNEXT” development

Quasicrystals (QCs) are fascinating solid materials that exhibit an intriguing atomic arrangement. Unlike regular crystals, in which atomic arrangements have an ordered repeating pattern, QCs display long-range atomic order that is not periodic. Due to this ‘quasiperiodic’ nature, QCs have unconventional symmetries that are absent in conventional crystals. Since their Nobel Prize-winning discovery, condensed matter physics researchers have dedicated immense attention towards QCs, attempting to both realize their unique quasiperiodic magnetic order and their possible applications in spintronics and magnetic refrigeration.

Although theoreticians have long expected the establishment of antiferromagnetism in select QCs, it has yet to be directly observed. Experimentally, most magnetic iQCs exhibit spin-glass-like freezing behavior, with no sign of long-range magnetic order, leading researchers to question whether antiferromagnetism is even compatible with quasiperiodicity — until now.

In a groundbreaking study, a research team has finally discovered antiferromagnetism in a real QC. The team was led by Ryuji Tamura from the Department of Materials Science and Technology at Tokyo University of Science (TUS), along with Takaki Abe, also from TUS, Taku J. Sato from Tohoku University, and Max Avdeev from the Australian Nuclear Science and Technology Organisation and The University of Sydney. Their study was published in the journal Nature Physics on April 11, 2025.


Quasicrystals are intriguing materials with long-range atomic order that lack periodicity. It has been a longstanding question whether antiferromagnetism, while commonly found in regular crystals, is even possible in quasicrystals. In a new study, researchers have finally answered this question, providing the first definitive neutron diffraction evidence of antiferromagnetism in a real icosahedral quasicrystal. This discovery opens a new research area of quasiperiodic antiferromagnets, with potential applications in spintronics.

STAR Data Reveal ‘Splash’ of the Quark-Gluon Plasma

Many groups of scientists studying jets at RHIC have focused on a phenomenon known as jet quenching, an apparent suppression of energetic jets emerging from the QGP. The idea is that jets are losing energy through their interactions with the QGP.

RHIC’s measurements of jet quenching to date have focused primarily on the most energetic, leading jet particles, because they are straightforward to measure. However, such leading particles provide only limited insight into the process. The new results from STAR reconstruct a wider correlated spray of particles making up the jets, revealing much more detail about how the QGP is “excited” and responds to the jet — and where the “lost” energy goes.

The new analysis, for the first time, included the reconstruction of jets produced back-to-back with photons.

Scientists just cracked the quantum code hidden in a single atom

A research team has created a quantum logic gate that uses fewer qubits by encoding them with the powerful GKP error-correction code. By entangling quantum vibrations inside a single atom, they achieved a milestone that could transform how quantum computers scale.

New quantum navigation device uses atoms to measure acceleration in 3D

In a new study, physicists at the University of Colorado Boulder have used a cloud of atoms chilled down to incredibly cold temperatures to simultaneously measure acceleration in three dimensions—a feat that many scientists didn’t think was possible.

The device, a new type of atom “interferometer,” could one day help people navigate submarines, spacecraft, cars and other vehicles more precisely.

“Traditional atom interferometers can only measure acceleration in a single dimension, but we live within a three-dimensional world,” said Kendall Mehling, a co-author of the new study and a graduate student in the Department of Physics at CU Boulder. “To know where I’m going, and to know where I’ve been, I need to track my acceleration in all three dimensions.”

The researchers published their paper, titled “Vector atom accelerometry in an optical lattice,” this month in the journal Science Advances. The team included Mehling; Catie LeDesma, a postdoctoral researcher in physics; and Murray Holland, professor of physics and fellow of JILA, a joint research institutebetween CU Boulder and the National Institute of Standards and Technology (NIST) (More information about the new quantum GPS)


A new quantum device could one day help spacecraft travel beyond Earth’s orbit or aid submarines as they navigate deep under the ocean with more precision than.

A new perspective on how cosmological correlations change based on kinematic parameters

To study the origin and evolution of the universe, physicists rely on theories that describe the statistical relationships between different events or fields in spacetime, broadly referred to as cosmological correlations. Kinematic parameters are essentially the data that specify a cosmological correlation—the positions of particles, or the wavenumbers of cosmological fluctuations.

Changes in cosmological correlations influenced by variations in parameters can be described using so-called differential equations. These are a type of mathematical equation that connect a function (i.e., a relationship between an input and an output) to its rate of change. In physics, these equations are used extensively as they are well-suited for capturing the universe’s highly dynamic nature.

Researchers at Princeton’s Institute for Advanced Study, the Leung Center for Cosmology and Particle Astrophysics in Taipei, Caltech’s Walter Burke Institute for Theoretical Physics, the University of Chicago, and the Scuola Normale Superiore in Pisa recently introduced a new perspective to approach equations describing how cosmological correlations are affected by smooth changes in kinematic parameters.

X Particles Detected Inside LHC for the First Time Ever!

Physicists at the LHC have recently identified a collection of approximately one hundred “X particles” originating from the early moments of the Big Bang. These findings, which may lead to a deeper understanding of the universe, have been published in the Physical Review Letters journal.

Particle accelerators bring particles into high-speed collisions. The largest of these is the Large Hadron Collider (LHC), located near Geneva. The purpose of these experiments is to simulate aspects of the Big Bang and to examine how matter behaves under those conditions.

In recent years, these high-energy collisions have led to the discovery of several theorized particles. More recently, physicists have detected about a hundred short-lived “X particles,” so named due to their mysterious structures, amid billions of elementary particles.

Nuclear waste could be a source of fuel in future reactors

Terence Tarnowsky, a physicist at Los Almos National Laboratory (LANL), will present his results at the fall meeting of the American Chemical Society (ACS). ACS Fall 2025 is being held Aug. 17–21; it features about 9,000 presentations on a range of science topics.


FOR IMMEDIATE RELEASE

Lea este comunicado de prensa en español

WASHINGTON, Aug. 18, 2025 — From electric cars to artificial intelligence (AI) data centers, the technologies people use every day require a growing need for electricity. In theory, nuclear fusion — a process that fuses atoms together, releasing heat to turn generators — could provide vast energy supplies with minimal emissions. But nuclear fusion is an expensive prospect because one of its main fuels is a rare version of hydrogen called tritium. Now, researchers are developing new systems to use nuclear waste to make tritium.

Latest Data Rule Out a Leading Explanation of a Neutrino Anomaly

In 2018, results from the MiniBooNE neutrino experiment suggested the exciting possibility that low-energy muon neutrinos quantum-mechanically flip into electron neutrinos more frequently than predicted by the standard model of particle physics. Theorists have sought to explain this anomaly, known as the low-energy excess (LEE), by invoking beyond-standard-model explanations such as the existence of new flavors of neutrinos (see Viewpoint: The Plot Thickens for a Fourth Neutrino). However, there was always the possibility that photon emission attributed to electron-neutrino interactions had been caused by other processes. Now, an analysis of five years of data from MicroBooNE, a follow-up experiment with a different design, has effectively ruled out the electron-neutrino-based interpretation of the LEE [1].

MiniBooNE operated by observing the Cherenkov radiation from fast-moving charged particles generated by neutrino–nucleus interactions in the 800 tonnes of mineral oil that constituted the detector’s sensitive volume. But the experiment could not easily exclude photons from other sources. MicroBooNE has a smaller sensitive volume composed of liquid argon, but it can reconstruct charged particles’ trajectories and energies precisely, allowing it to identify photon origins more reliably. As well as taking advantage of this intrinsic selectivity, the MicroBooNE team took elaborate steps to reduce all sources of uncertainty, both instrumental and theoretical.

The resulting high-quality data show good agreement with the standard-model predictions. By comparing these results with those from MiniBooNE, the researchers were able to exclude the electron-neutrino-based explanation for the apparent LEE at a confidence level of over 99%. While this conclusion might be disappointing for some, it compels scientists to look for new explanations for the MiniBooNE anomaly, the cause of which is still unknown.

/* */