Toggle light / dark theme

Physicists model how amorphous solids lose their stability

Why do avalanches start to slide? And what happens inside the “pile of snow?” If you ask yourself these questions, you are very close to a physical problem. This phenomenon not only occurs on mountain peaks and in snow masses, where it is rather uncontrolled—it is also studied in the laboratory at the microscopic level in materials with a disordered particle structure, for example in glasses, granular materials or foams.

Particles can “slide” in a similar way to avalanches, causing the structure to lose its and become deformable, even independently of a change in temperature. But what happens inside such a shaky structure?

Physicist Matthias Fuchs from the University of Konstanz and his colleagues Florian Vogel and Philipp Baumgärtel are researching these disordered solids. Two years ago, they solved an old puzzle about glass vibrations by revisiting a forgotten theory. “Now we have continued the project to answer the question of when an ‘irregular house of cards collapses.’ We want to find out when an amorphous solid loses its stability and starts to slide like a pile of sand,” says Fuchs.

Changhong, Other Chinese TV Makers Link TV Sets to DeepSeek Chatbot

Devices that leverage quantum mechanics effects, broadly referred to as quantum technologies, could help to tackle some real-world problems faster and more efficiently. In recent years, physicists and engineers have introduced various promising quantum technologies, including so-called quantum sensors.

Networks of quantum sensors could theoretically be used to measure specific parameters with remarkable precision. These networks leverage a quantum phenomenon known as entanglement, which entails a sustained connection between particles, which allows them to instantly share information with each other, even at a distance.

While quantum sensor networks (QSNs) could have various advantageous real-world applications, their effective deployment also relies on the ability to ensure that the information shared between sensors remains private and is not accessible to malicious third parties.

Quantum For AI, AI For Quantum

Yuval Boger is the Chief Commercial Officer of QuEra Computing, a leader in neutral-atom quantum computers.

Quantum computing and artificial intelligence stand at the forefront of modern technological advancement, each representing a paradigm shift that can transform industries ranging from healthcare and finance to logistics and materials science. Not long ago, these two fields appeared to be competitors vying for the same innovation budgets—while AI generated immediate returns, quantum computing was seen as a more speculative endeavor. However, the reality is more nuanced. Rather than being rivals, quantum and AI can symbiotically accelerate one another’s progress, sparking breakthroughs that neither could achieve in isolation.

AI is widely deployed today, driving business value via deep learning models, sophisticated analytics platforms and even self-driving technologies. Executives can see tangible returns in short timeframes, spurring widespread adoption. Quantum computing, by contrast, has yet to reach full commercial viability.

Quantum-inspired advancement turns crystal gaps into terabyte storage for classical memory

From punch card-operated looms in the 1800s to modern cellphones, if an object has an “on” and an “off” state, it can be used to store information.

In a computer laptop, the binary ones and zeroes are transistors either running at low or high voltage. On a compact disc, the one is a spot where a tiny indented “pit” turns to a flat “land” or vice versa, while a zero is when there’s no change.

Historically, the size of the object making the “ones” and “zeroes” has put a limit on the size of the storage device. But now, University of Chicago Pritzker School of Molecular Engineering (UChicago PME) researchers have explored a technique to make ones and zeroes out of crystal defects, each the size of an individual atom for classical computer memory applications.

Dance of magnetism and light: Study finds nonreciprocal second harmonic generation disappears in 2D material

A research group recently discovered the disappearance of nonreciprocal second harmonic generation (SHG) in MnPSe₃ when integrated into a two-dimensional (2D) antiferromagnetic MnPSe₃/graphene heterojunction.

The research, published in Nano Letters, highlights the role of interfacial magnon-plasmon coupling in this phenomenon.

2D van der Waals magnetic/non-magnetic heterojunctions hold significant promise for spintronic devices. Achieving these functionalities hinges on the interfacial proximity effect, a critical factor. However, detecting the proximity effect in 2D antiferromagnetic/non-magnetic heterojunctions presents considerable challenges, due to the small size and weak signals associated with these structures.

A novel technique for identifying magnetic ordering in antiferromagnets

A new trick for illuminating the internal ordering within a special type of magnet could help engineers build better memory-storage devices. Developed by RIKEN physicists, this technique could make memory devices less corruptible.

The work is published in the journal Nature Communications.

Conventional hard disks are based on ferromagnets—materials in which the , or spins, associated with each atom all point in the same direction. This alignment gives the material a net . Data is stored by creating different magnetization patterns across the material.

Quantum machine offers peek into “dance” of cosmic bubbles

Physicists have performed a groundbreaking simulation they say sheds new light on an elusive phenomenon that could determine the ultimate fate of the Universe.

Pioneering research in quantum field theory around 50 years ago proposed that the universe may be trapped in a false vacuum – meaning it appears stable but in fact could be on the verge of transitioning to an even more stable, true vacuum state. While this process could trigger a catastrophic change in the Universe’s structure, experts agree that predicting the timeline is challenging, but it is likely to occur over an astronomically long period, potentially spanning millions of years.

In an international collaboration between three research institutions, the team report gaining valuable insights into false vacuum decay – a process linked to the origins of the cosmos and the behaviour of particles at the smallest scales. The collaboration was led by Professor Zlatko Papic, from the University of Leeds, and Dr Jaka Vodeb, from the Jülich Supercomputing Centre (JSC) at Forschungszentrum Jülich, Germany.

‘Cosmic Highway’ Discovered: How Alpha Centauri’s Debris May Link Our Solar System to Faraway Stars

A groundbreaking study reveals that Alpha Centauri’s particles are already making their way into our solar system, traveling across the cosmic highway that connects star systems. These particles, ejected from the nearest stellar neighbor to Earth, could be carrying valuable insights about distant worlds and the forces that shape our galaxy.