Menu

Blog

Archive for the ‘particle physics’ category: Page 435

Aug 29, 2019

Why This New 16-Bit Carbon Nanotube Processor Is Such a Big Deal

Posted by in categories: nanotechnology, particle physics

Carbon isn’t just the stuff life is made of—it’s also the stuff our future is being built on.

Carbon—a versatile element that frequently trades off its electrons to create various forms of itself—has been gaining an exciting reputation in tech thanks to the successful exfoliation of graphene, a sheet of carbon that’s just one atom thick and has remarkable chemical properties.

But carbon nanotubes, a sort of cousin to graphene, has been quietly staking out its own place in the world of materials science.

Aug 29, 2019

Break in temporal symmetry produces molecules that can encode information

Posted by in categories: computing, particle physics, quantum physics

In a study published in Scientific Reports, a group of researchers affiliated with São Paulo State University (UNESP) in Brazil describes an important theoretical finding that may contribute to the development of quantum computing and spintronics (spin electronics), an emerging technology that uses electron spin or angular momentum rather than electron charge to build faster, more efficient devices.

The study was supported by São Paulo Research Foundation—FAPESP. Its principal investigator was Antonio Carlos Seridonio, a professor in UNESP’s Department of Physics and Chemistry at Ilha Solteira, São Paulo State. His graduate students Yuri Marques, Willian Mizobata and Renan Oliveira also participated.

The researchers observed that molecules with the capacity to encode information are produced in systems called Weyl semimetals when is broken.

Aug 29, 2019

Meet the Indian scientist who wants to capture one of the universe’s smallest particles

Posted by in category: particle physics

Nobody can say for sure. Hundreds of years ago, atoms were thought to be the smallest particles in the universe. But since then, scientists like Indu invented tools such as particle detectors, accelerators, and colliders that can study them in great detail. Thanks to these tools, they have discovered a whole set of elementary particles, which are the smallest particles we know about today.

Quarks and gluons are two such elementary particles that combine to form protons and neutrons. These, along with electrons, make up atoms. Atoms constitute most of the matter that we know about—from trees and stones to animals and birds. But Indu was amazed to learn that there is a whole set of particles that exist but are not part of atoms at all. One such elementary particle is the neutrino, Indu’s absolute favourite! Neutrinos are everywhere. They whiz across the universe—from the sun and from elsewhere in outer space. Many of them reach us here on earth too. So, how common are they?

Tell you what. Snap your fingers right now. Done? In the amount of time it took you to do this, billions of neutrinos have passed through your thumb! Neutrinos may be tiny, but they are very important because our universe is full of them. Knowing the mass of a neutrino will help Indu understand the rate at which the universe is expanding.

Aug 28, 2019

Kilopower: NASA’s Offworld Nuclear Reactor

Posted by in categories: nuclear energy, particle physics, sustainability, transportation

General Motors is the latest automaker reported to be working on solid-state lithium batteries, thanks to a $2 million grant from Uncle Sam.

The money is part of a larger grant to develop more fuel-efficient powertrains, CNET reported. The company is expected to use the rest of the money to develop a lighter-weight, more efficient engine for medium duty trucks, perhaps to replace the company’s 6.2-liter V-8.

Continue reading “Kilopower: NASA’s Offworld Nuclear Reactor” »

Aug 28, 2019

MIT Researchers Build Functional Carbon Nanotube Microprocessor

Posted by in categories: computing, nanotechnology, particle physics

Scientists at MIT built a 16-bit microprocessor out of carbon nanotubes and even ran a program on it, a new paper reports.

Silicon-based computer processors seem to be approaching a limit to how small they can be scaled, so researchers are looking for other materials that might make for useful processors. It appears that transistors made from tubes of rolled-up, single-atom-thick sheets of carbon, called carbon nanotubes, could one day have more computational power while requiring less energy than silicon.

“This work is particularly exciting because carbon nanotubes are one of the most promising supplements in the future of beyond-silicon computers,” Max Shulaker, the study’s corresponding author and assistant professor at MIT, told Gizmodo.

Aug 28, 2019

AI learns to model our Universe

Posted by in categories: particle physics, robotics/AI, space, supercomputing

Researchers have successfully created a model of the Universe using artificial intelligence, reports a new study.

Researchers seek to understand our Universe by making to match observations. Historically, they have been able to model simple or highly simplified physical systems, jokingly dubbed the “spherical cows,” with pencils and paper. Later, the arrival of computers enabled them to model complex phenomena with . For example, researchers have programmed supercomputers to simulate the motion of billions of particles through billions of years of cosmic time, a procedure known as the N-body simulations, in order to study how the Universe evolved to what we observe today.

“Now with , we have developed the first neural network model of the Universe, and demonstrated there’s a third route to making predictions, one that combines the merits of both analytic calculation and numerical simulation,” said Yin Li, a Postdoctoral Researcher at the Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, and jointly the University of California, Berkeley.

Aug 27, 2019

What Is Quantum Gravity?

Posted by in categories: particle physics, quantum physics, space

Gravity was the first fundamental force that humanity recognized, yet it remains the least understood. Physicists can predict the influence of gravity on bowling balls, stars and planets with exquisite accuracy, but no one knows how the force interacts with minute particles, or quanta. The nearly century-long search for a theory of quantum gravity — a description of how the force works for the universe’s smallest pieces — is driven by the simple expectation that one gravitational rulebook should govern all galaxies, quarks and everything in between. [Strange Quarks and Muons, Oh My! Nature’s Tiniest Particles Dissected (Infographic)].

Aug 27, 2019

Experiments with a single atom rule out the ‘fifth force’ theory of dark energy

Posted by in categories: cosmology, particle physics

We still don’t know what dark energy is, but we have a better idea of what it isn’t.

Aug 27, 2019

Newly Developed Cameras Use Light to See Around Corners

Posted by in categories: engineering, information science, particle physics, robotics/AI

David Lindell, a graduate student in electrical engineering at Stanford University, along with his team, developed a camera that can watch moving objects around corners. When they tested the new technology, Lindell wore a high visibility tracksuit as he moved around an empty room. They had a camera that was aimed at a blank wall away from Lindell, and the team was able to watch all of his movements with the use of a high powered laser. The laser reconstructed the images through the use of single particles of light that were reflected onto the walls around Lindell. The newly developed camera used advanced sensors and a processing algorithm.

Gordon Wetzstein, assistant professor of electrical engineering at Stanford, spoke about the newly developed technology.

“People talk about building a camera that can see as well as humans for applications such as autonomous cats and robots, but we want to build systems that go well beyond that,” he said. “We want to see things in 3D, around corners and beyond the visible light spectrum.”

Aug 26, 2019

Could Lasers Be The Future Of Anti-Missile Weapons?

Posted by in categories: cybercrime/malcode, particle physics

A new type of device could be made to hack enemy missiles in flight to disarm them or guide them away. With a neutrino hacking laser you could essentially hack any missile from almost anywhere.