Menu

Blog

Archive for the ‘particle physics’ category: Page 432

Sep 14, 2019

Using an optical tweezer array of laser-cooled molecules to observe ground state collisions

Posted by in category: particle physics

A team of researchers from Harvard University and Massachusetts Institute of Technology has found that they could use an optical tweezer array of laser-cooled molecules to observe ground state collisions between individual molecules. In their paper published in the journal Science, the group describes their work with cooled calcium monofluoride molecules trapped by optical tweezers, and what they learned from their experiments. Svetlana Kotochigova, with Temple University, has published a Perspective piece in the same journal issue outlining the work—she also gives an overview of the work being done with arrays of optical tweezers to better understand molecules in general.

As Kotochigova notes, the development of optical tweezers in the 1970s has led to groundbreaking science because it allows for studying atoms and at an unprecedented level of detail. Their work involves using to create a force that can hold extremely tiny objects in place as they are being studied. In more recent times, have grown in sophistication—they can now be used to manipulate arrays of molecules, which allows researchers to see what happens when they interact under very controlled conditions. As the researchers note, such arrays are typically chilled to keep their activity at a minimum as the molecules are being studied. In this new effort, the researchers chose to study arrays of cooled calcium monofluoride molecules because they have what the team describes as nearly diagonal Franck-Condon factors, which means they can be electronically excited by firing a laser at them, and then revert to an after emission.

In their work, the researchers created arrays of by diffracting a single beam into many smaller beams, each of which could be rearranged to suit their purposes in real time. In the initial state, an unknown number of molecules were trapped in the array. The team then used light to force collisions between the molecules, pushing some of them out of the array until they had the desired number in each tweezer. They report that in instances where there were just two molecules present, they were able to observe natural ultracold collisions—allowing a clear view of the action.

Sep 13, 2019

Solving the Schrödinger equation with deep learning

Posted by in categories: information science, particle physics, quantum physics, robotics/AI

The code used below is on GitHub.

In this project, we’ll be solving a problem familiar to any physics undergrad — using the Schrödinger equation to find the quantum ground state of a particle in a 1-dimensional box with a potential. However, we’re going to tackle this old standby with a new method: deep learning. Specifically, we’ll use the TensorFlow package to set up a neural network and then train it on random potential functions and their numerically calculated solutions.

Why reinvent the wheel (ground state)? Sure, it’s fun to see a new tool added to the physics problem-solving toolkit, and I needed the practice with TensorFlow. But there’s a far more compelling answer. We know basically everything there is to know about this topic already. The neural network, however, doesn’t know any physics. Crudely speaking, it just finds patterns. Suppose we examine the relative strength of connections between input neurons and output. The structure therein could give us some insight into how the universe “thinks” about this problem. Later, we can apply deep learning to a physics problem where the underlying theory is unknown. By looking at the innards of that neural network, we might learn something new about fundamental physical principles that would otherwise remain obscured from our view. Therein lies the true power of this approach: peering into the mind of the universe itself.

Sep 12, 2019

Researchers produce synthetic Hall Effect to achieve one-way radio transmission

Posted by in categories: materials, particle physics

Researchers at the University of Illinois at Urbana-Champaign have replicated one of the most well-known electromagnetic effects in physics, the Hall Effect, using radio waves (photons) instead of electric current (electrons). Their technique could be used to create advanced communication systems that boost signal transmission in one direction while simultaneously absorbing signals going in the opposite direction.

The Hall Effect, discovered in 1879 by Edwin Hall, occurs because of the interaction between charged particles and . In an electric field, negatively charged particles (electrons) experience a force opposite to the direction of the field. In a , moving electrons experience a force in the direction perpendicular to both their motion and the magnetic field. These two forces combine in the Hall Effect, where perpendicular electric and magnetic fields combine to generate an . Light isn’t charged, so regular electric and magnetic fields can’t be used to generate an analogous “current of light.” However, in a recent paper published in Physical Review Letters, researchers have done exactly this with the help of what they call “synthetic electric and magnetic fields.”

Principal investigator Gaurav Bahl’s research group has been working on several methods to improve radio and optical data transmission as well as fiber optic communication. Earlier this year, the group exploited an interaction between light and sound waves to suppress the scattering of light from material defects and published its results in Optica. In 2018, team member Christopher Peterson was the lead author in a Science Advances paper which explained a technology that promises to halve the bandwidth needed for communications by allowing an antenna to send and receive signals on the same frequency simultaneously through a process called nonreciprocal coupling.

Sep 12, 2019

Synopsis: Diamond Qubits Take the Stage

Posted by in categories: computing, particle physics, quantum physics

A ten-qubit system based on spins in impure diamond achieves coherence times of over a minute.

In the global race to build a quantum computer, it’s still unclear what material will make the best qubit. Companies have bet on a variety of architectures based on trapped ions, neutral atoms, superconducting circuits, and more. Now, Tim Taminiau of Delft University of Technology, Netherlands, and colleagues have demonstrated that they can manipulate magnetic spins inside diamond into the robust quantum states necessary for quantum computing. In their experiment, they entangle all possible pairs of a ten-qubit system and produce states in which seven different qubits are entangled simultaneously. They also show that individual qubits can retain quantum coherence for up to 75 s—a record for solid-state systems.

Sep 10, 2019

Experiments at temperature of sun offer solutions to solar model problems

Posted by in category: particle physics

Experimenting at 4.1 million degrees Fahrenheit, physicists at Sandia National Laboratories’ Z machine have found that an astronomical model—used for 40 years to predict the sun’s behavior as well as the life and death of stars—underestimates the energy blockage caused by free-floating iron atoms, a major player in those processes.

The blockage effect, called opacity, is an element’s natural resistance to energy passing through it, similar to an opaque window’s resistance to the passage of light.

“By observing real-world discrepancies between theory and our experiments at Z, we were able to identify weaknesses in opacity figures inserted into solar models,” said Taisuke Nagayama, lead author on the Sandia groups’ latest publication in Physical Review Letters.

Sep 9, 2019

Space and Time Could Be a Quantum Error-Correcting Code

Posted by in categories: particle physics, quantum physics

The fabric of space-time may get its robustness from a network of quantum particles, according to a principle called quantum error correction.

Sep 9, 2019

Hard as a diamond? Scientists predict new forms of superhard carbon

Posted by in categories: materials, particle physics

Superhard materials can slice, drill and polish other objects. They also hold potential for creating scratch-resistant coatings that could help keep expensive equipment safe from damage.

Now, science is opening the door to the development of new materials with these seductive qualities.

Researchers have used computational techniques to identify 43 previously unknown forms of that are thought to be stable and superhard—including several predicted to be slightly harder than or nearly as hard as diamonds. Each new carbon variety consists of carbon atoms arranged in a distinct pattern in a .

Sep 8, 2019

Jupiter Magnetic Field Simulated Using CERN High Energy Electron Beam

Posted by in categories: nuclear energy, particle physics, space travel

The European Organization for Nuclear Research, or CERN, is most famous for its particle collider, but it also has facilities that can test for other high-energy environments similar to those found in space. Now those facilities are being used to test future spacecraft to see if they are radiation-proof.

The European Space Agency (ESA) will launch the Jupiter Icy Moons Explorer, or JUICE, mission in 2022. Before then, ESA scientists wanted to know what kinds of environmental stresses the explorer will be subjected to when it braves Jupiter’s massive magnetic field. The magnetic field has a volume of a million times that of Earth’s magnetosphere, and trapped within the field are energetic charged particles. These particles form radiation belts which bombard visiting craft with high levels of radiation, which can be harmful to electronics.

To see how the JUICE hardware will handle this radiation, the ESA has borrowed the world’s most intense radiation beam — one located at a CERN facility called VESPER (Very energetic Electron facility for Space Planetary Exploration missions in harsh Radiative environments). Now it is working alongside CERN to develop the testing protocol for other future missions too, such as the proposed Ice Giants mission to Neptune and Uranus.

Sep 8, 2019

[quant-ph/9706059] Introduction of a Quantum of Time (“chronon”), and its Consequences for Quantum Mechanics

Posted by in categories: particle physics, quantum physics

Abstract: In this review-article, we discuss the consequences of the introduction of a quantum of time tau_0 in the formalism of non-relativistic quantum mechanics (QM) by referring ourselves in particular to the theory of the “chronon” as proposed by P.Caldirola. Such an interesting “finite difference” theory, forwards —at the classical level— a solution for the motion of a particle endowed with a non-negligible charge in an external electromagnetic field, overcoming all the known difficulties met by Abraham-Lorentz’s and Dirac’s approaches (and even allowing a clear answer to the question whether a free falling charged particle does or does not emit radiation), and —at the quantum level— yields a remarkable mass spectrum for leptons. After having briefly reviewed Caldirola’s approach, we compare one another the new Schroedinger, Heisenberg and density-operator (Liouville-von Neumann) pictures resulting from it. Moreover, for each representation, three (retarded, symmetric and advanced) formulations are possible, which refer either to times t and t-tau_0, or to times t-tau_0/2 and t+tau_0/2, or to times t and t+tau_0, respectively. It is interesting to notice that, e.g., the “retarded” QM does naturally appear to describe QM with friction, i.e., to describe dissipative quantum systems (like a particle moving in an absorbing medium). In this sense, discretized QM is much richer than the ordinary one. When the density matrix formalism is applied to the solution of the measurement problem in QM, very interesting results are met, so as a natural explication of “decoherence”.

From: [view email].

Sep 8, 2019

Exotic Physics Phenomenon Involving Time Reversal Observed for First Time

Posted by in categories: computing, mathematics, particle physics, quantum physics

An exotic physical phenomenon, involving optical waves, synthetic magnetic fields, and time reversal, has been directly observed for the first time, following decades of attempts. The new finding could lead to realizations of what are known as topological phases, and eventually to advances toward fault-tolerant quantum computers, the researchers say.

The new finding involves the non-Abelian Aharonov-Bohm Effect and is published in the journal Science by MIT graduate student Yi Yang, MIT visiting scholar Chao Peng (a professor at Peking University), MIT graduate student Di Zhu, Professor Hrvoje Buljan at University of Zagreb in Croatia, Francis Wright Davis Professor of Physics John Joannopoulos at MIT, Professor Bo Zhen at the University of Pennsylvania, and MIT professor of physics Marin Soljačić.

The finding relates to gauge fields, which describe transformations that particles undergo. Gauge fields fall into two classes, known as Abelian and non-Abelian. The Aharonov-Bohm Effect, named after the theorists who predicted it in 1959, confirmed that gauge fields — beyond being a pure mathematical aid — have physical consequences.