Menu

Blog

Archive for the ‘particle physics’ category: Page 436

Aug 26, 2019

New theory draws connections between Planckian metals and black holes

Posted by in categories: cosmology, information science, particle physics, quantum physics

Two researchers at Harvard University, Aavishkar A. Patel and Subir Sachdev, have recently presented a new theory of a Planckian metal that could shed light on previously unknown aspects of quantum physics. Their paper, published in Physical Review Letters, introduces a lattice model of fermions that describes a Planckian metal at low temperatures (Tà 0).

Metals contain numerous , which carry . When physicists consider the electrical resistance of metals, they generally perceive it as arising when the flow of current-carrying electrons is interrupted or degraded due to electrons scattering off impurities or off the crystal lattice in the metal.

“This picture, put forth by Drude in 1900, gives an equation for the electrical resistance in terms of how much time electrons spend moving freely between successive collisions,” Patel told Phys.org. “The length of this time interval between collisions, called the ‘,’ or ‘electron liftetime,’ is typically long enough in most common metals for the electrons to be defined as distinct, mobile objects to a microscopic observer, and the Drude picture works remarkably well.”

Aug 25, 2019

Researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Posted by in categories: particle physics, quantum physics, supercomputing

Since their experimental discovery, magnetic skyrmions—tiny magnetic knots—have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometers can be stabilized in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by , but could only be proven experimentally in 2013. Skyrmions with a diameter from micrometers to a few nanometers were discovered in different magnetic material systems. Although they can be generated on a surface of a few atoms and manipulated with , they show a high stability against external influences. This makes them for future data storage or logic devices. In order to be competitive for technological applications, however, skyrmions must not only be very small, but also stable without an applied magnetic field.

Researchers at the universities of Hamburg and Kiel have now taken an important step in this direction. On the basis of quantum mechanical numerical calculations carried out on the supercomputers of the North-German Supercomputing Alliance (HLRN), the physicists from Kiel were able to predict that individual skyrmions with a diameter of only a few nanometers would appear in an atomically thin, ferromagnetic cobalt film (see Fig. 1). “The stability of the magnetic knots in these films is due to an unusual competition between different magnetic interactions,” says Sebastian Meyer, Ph.D. student in Prof. Stefan Heinze’s research group at the Kiel University.

Aug 23, 2019

Is There an Element Zero?

Posted by in categories: chemistry, particle physics

The periodic table contains a wide array of elements, numbered from one (hydrogen) to 118 (oganesson), with each number representing the number of protons stored within an atom’s nucleus. Scientists are constantly working to create new elements by cramming more and more protons into nuclei, expanding the periodic table. The effort sparks curiosity and questions: Can the table be enlarged in the opposite direction? Is it possible to make an element zero? Does it already exist?

“Element zero” has been a matter of conjecture for nearly a century, and no scientist searched more ardently for it than German chemist Andreas von Antropoff. It was Antropoff who placed the theoretical element atop a periodic table of his own devising, and it was also he who thought up a prescient name for it: neutronium.

You don’t widely hear Antropoff’’s name today, as his Nazi leanings earned the scientist international disgrace. You do, however, hear about neutronium. Today, the term commonly refers to a gaseous substance composed almost purely of neutrons, found within the tiniest, densest stars known to exist: neutron stars.

Aug 23, 2019

Complex quantum teleportation achieved for the first time

Posted by in categories: computing, particle physics, quantum physics

Yay face_with_colon_three


Austrian and Chinese scientists have succeeded in teleporting three-dimensional quantum states for the first time. High-dimensional teleportation could play an important role in future quantum computers.

Researchers from the Austrian Academy of Sciences and the University of Vienna have experimentally demonstrated what was previously only a theoretical possibility. Together with quantum physicists from the University of Science and Technology of China, they have succeeded in teleporting complex high-dimensional quantum states. The research teams report this international first in the journal Physical Review Letters.

Continue reading “Complex quantum teleportation achieved for the first time” »

Aug 23, 2019

How We Recreated The Early Universe In The Laboratory

Posted by in categories: cosmology, particle physics

One of the all-time great mysteries in physics is why our universe contains more matter than antimatter, which is the equivalent of matter but with the opposite charge. To tackle this question, our international team of researchers have managed to create a plasma of equal amounts of matter and antimatter – a condition we think made up the early universe.

Matter as we know it appears in four different states: solid, liquid, gas, and plasma, which is a really hot gas where the atoms have been stripped of their electrons. However, there is also a fifth, exotic state: a matter-antimatter plasma, in which there is complete symmetry between negative particles (electrons) and positive particles (positrons).

This peculiar state of matter is believed to be present in the atmosphere of extreme astrophysical objects, such as black holes and pulsars. It is also thought to have been the fundamental constituent of the universe in its infancy, in particular during the Leptonic era, starting approximately one second after the Big Bang.

Aug 23, 2019

What’s the Total Energy In the Universe?

Posted by in category: particle physics

Circa 2011


Considering the amount of energy packed in the nucleus of a single uranium atom, or the energy that has been continuously radiating from the sun for billions of years, or the fact that there are 1080 particles in the observable universe, it seems that the total energy in the universe must be an inconceivably vast quantity. But it’s not; it’s probably zero.

Light, matter and antimatter are what physicists call “positive energy.” And yes, there’s a lot of it (though no one is sure quite how much). Most physicists think, however, that there is an equal amount of “negative energy” stored in the gravitational attraction that exists between all the positive-energy particles. The positive exactly balances the negative, so, ultimately, there is no energy in the universe at all.

Continue reading “What’s the Total Energy In the Universe?” »

Aug 23, 2019

DARPA’s Handheld Nuclear Fusion Reactor

Posted by in categories: computing, military, nuclear energy, particle physics

fusionsunLast year, Pentagon mad science arm DARPA was working on one of its wildest projects yet: a microchip-sized nuclear reactor. The program is now officially done, the agency says. But these sorts of far-out projects have a habit of being reemerging under new managers and new names.

The project, known as the “Chip-Scale High Energy Atomic Beams” program, is an effort aimed at working on the core technologies behind a tiny particle accelerator, capable of firing subatomic particles at incredible speeds. It’s part of a larger DARPA plan to reduce all sorts of devices to microchip-scale – including cryogenic coolers, video cameras and multi-purpose sensors. All of the projects are ambitious (this is DARPA, after all). But this had to be the most ambitious of the lot. Here’s how DARPA’s plans for fiscal year 2009 described it:

You’ve read your last complimentary article this month. To read the full article, SUBSCRIBE NOW. If you’re already a subscriber, please sign in and and verify your subscription.

Aug 22, 2019

Scientists Just Used The Cosmos to Measure The Mass of a Ghost Particle

Posted by in categories: particle physics, space

How do you weigh a ghost? If you’re a cosmologist, you could use… the Universe. Combine vast cosmological data with info from particle accelerators, and, it turns out, you have a pretty good scale for measuring the mass of a neutrino — also known as the ‘ghost particle’.

This is how a team of scientists, for the first time, have set an upper limit on the mass of the lightest of the three different types of neutrino.

Neutrinos are peculiar little things. They are among the most abundant subatomic particles in the Universe, similar to electrons, but without a charge and almost massless. This means they interact very rarely with normal matter; in fact, billions are passing through your body right now.

Aug 22, 2019

Forget About Electrons And Protons; The Unstable Muon Could Be The Future Of Particle Physics

Posted by in categories: futurism, particle physics

The particle tracks emanating from a high energy collision at the LHC in 2014 show the creation of many new particles. It’s only because of the high-energy nature of this collision that new masses can be created.

Aug 22, 2019

‘Electron pairing’ found well above superconductor’s critical temperature

Posted by in categories: computing, mobile phones, particle physics

Physicists have found “electron pairing,” a hallmark feature of superconductivity, at temperatures and energies well above the critical threshold where superconductivity happens.

Rice University’s Doug Natelson, co-corresponding author of a paper about the work in this week’s Nature, said the discovery of Cooper pairs of electrons “a bit above the critical temperature won’t be ‘crazy surprising’ to some people. The thing that’s more weird is that it looks like there are two different energy scales. There’s a higher energy scale where the pairs form, and there’s a lower energy scale where they all decide to join hands and act collectively and coherently, the behavior that actually brings about superconductivity.”

Continue reading “‘Electron pairing’ found well above superconductor’s critical temperature” »