Archive for the ‘particle physics’ category: Page 406
Mar 16, 2020
The golden age of neutron-star physics has arrived
Posted by Derick Lee in categories: particle physics, space
Astronomers know that much about how neutron stars are born. Yet exactly what happens afterwards, inside these ultra-dense cores, remains a mystery. Some researchers theorize that neutrons might dominate all the way down to the centre. Others hypothesize that the incredible pressure compacts the material into more exotic particles or states that squish and deform in unusual ways.
Now, after decades of speculation, researchers are getting closer to solving the enigma, in part thanks to an instrument on the International Space Station called the Neutron Star Interior Composition Explorer (NICER).
These stellar remnants are some of the Universe’s most enigmatic objects — and they are finally starting to give up their secrets.
Mar 14, 2020
We’re not saying Earth is doomed… but 139 minor planets were spotted at the outer reaches of our Solar System. Just an FYI, that’s all
Posted by Quinn Sena in categories: particle physics, space, tractor beam
A simple tractor beam can pull them away like a higgs boson tractor beam.
Too bad they are likely uninhabitable.
Mar 14, 2020
Ancient Supermassive Black Hole Has Its Particle Beam Aimed Right at Earth
Posted by Quinn Sena in categories: cosmology, particle physics
Maybe could use a higgs field to deflect it or aim it away or use a higgs laser to destroy the black hole.
Astronomers have discovered the existence of a supermassive black hole that looks to be the oldest and most distant of its kind we’ve ever encountered – and it just happens to be aiming its bright particle beam directly at Earth.
The newly found supermassive black hole – called PSO J030947.49+271757.31 – is the most distant blazar ever observed, researchers say. That conclusion is based on the wavelength signature of the object’s redshift, a phenomenon scientists can use to measure the distance of light-emitting sources in space.
Continue reading “Ancient Supermassive Black Hole Has Its Particle Beam Aimed Right at Earth” »
Mar 13, 2020
Initialization of quantum simulators
Posted by Saúl Morales Rodriguéz in categories: biological, particle physics, quantum physics
Simulating computationally complex many-body problems on a quantum simulator has great potential to deliver insights into physical, chemical and biological systems. Physicists had previously implemented Hamiltonian dynamics but the problem of initiating quantum simulators to a suitable quantum state remains unsolved. In a new report on Science Advances, Meghana Raghunandan and a research team at the institute for theoretical physics, QUEST institute and the Institute for quantum optics in Germany demonstrated a new approach. While the initialization protocol developed in the work was largely independent of the physical realization of the simulation device, the team provided an example of implementing a trapped ion quantum simulator.
Quantum simulation is an emergent technology aimed at solving important open problems relative to high-temperature superconductivity, interacting quantum field theories or many-body localization. A series of experiments have already demonstrated the successful implementation of Hamiltonian dynamics within a quantum simulator—however, the approach can become challenging across quantum phase transitions. In the new strategy, Raghunandan et al. overcame this problem by building on recent advances in the use of dissipative quantum systems to engineer interesting many-body states.
Almost all many-body Hamiltonians of interest remain outside a previously investigated class and therefore require generalization of the dissipative state preparation procedure. The research team therefore presented a previously unexplored paradigm for the dissipative initialization of a quantum simulator by coupling the many-body system performing the quantum simulation to a dissipatively driven auxiliary particle. They chose the energy splitting within the auxiliary particle to become resonant with the many-body excitation gap of the system of interest; described as the difference of the ground-state energy and the energy of the first excited state. During such conditions of resonance, the energy of the quantum simulator could be transferred efficiently to the auxiliary particle for the former to be cooled sympathetically, i.e., particles of one type, cooled particles of another type.
Mar 13, 2020
Invisible plastics in water
Posted by Saúl Morales Rodriguéz in categories: engineering, nanotechnology, particle physics
A Washington State University research team has found that nanoscale particles of the most commonly used plastics tend to move through the water supply, especially in fresh water, or settle out in wastewater treatment plants, where they end up as sludge, in landfills, and often as fertilizer.
Neither scenario is good.
“We are drinking lots of plastics,” said Indranil Chowdhury, an assistant professor in WSU’s Department of Civil and Environmental Engineering, who led the research. “We are drinking almost a few grams of plastics every month or so. That is concerning because you don’t know what will happen after 20 years.”
Mar 13, 2020
Quantum computing breakthrough in atom control found
Posted by Quinn Sena in categories: computing, particle physics, quantum physics
A team of scientists in Australia claim to have stumbled on a breakthrough discovery that will have “major implications” for the future of quantum computing.
Describing the find as a “happy accident,” engineers at the University of New South Wales Sydney found a way to control the nucleus of an atom using electric fields rather than magnetic fields—which they have claimed could now open up a “treasure trove of discoveries and applications.”
Mar 13, 2020
Physicists use extreme infrared laser pulses to reveal frozen electron waves in magnetite
Posted by Genevieve Klien in categories: materials, particle physics
Magnetite is the oldest magnetic material known to humans, yet researchers are still mystified by certain aspects of its properties.
For example, when the temperature is lowered below 125 kelvins, magnetite changes from a metal to an insulator, its atoms shift to a new lattice structure, and its charges form a complicated ordered pattern. This extraordinarily complex phase transformation, which was discovered in the 1940s and is known as the Verwey transition, was the first metal-insulator transition ever observed. For decades, researchers have not understood exactly how this phase transformation was happening.
According to a paper published March 9 in Nature Physics, an international team of experimental and theoretical researchers discovered fingerprints of the quasiparticles that drive the Verwey transition in magnetite. Using an ultrashort laser pulse, the researchers were able to confirm the existence of peculiar electronic waves that are frozen at the transition temperature and start “dancing together” in a collective oscillating motion as the temperature is lowered.
Mar 12, 2020
Novel error-correction scheme developed for quantum computers
Posted by Quinn Sena in categories: computing, particle physics, quantum physics
Scientists in Australia have developed a new approach to reducing the errors that plague experimental quantum computers; a step that could remove a critical roadblock preventing them scaling up to full working machines.
By taking advantage of the infinite geometric space of a particular quantum system made up of bosons, the researchers, led by Dr. Arne Grimsmo from the University of Sydney, have developed quantum error correction codes that should reduce the number of physical quantum switches, or qubits, required to scale up these machines to a useful size.
“The beauty of these codes is they are ‘platform agnostic’ and can be developed to work with a wide range of quantum hardware systems,” Dr. Grimsmo said.
Mar 11, 2020
Engineers crack 58-year-old puzzle on way to quantum breakthrough
Posted by Quinn Sena in categories: computing, engineering, particle physics, quantum physics
A happy accident in the laboratory has led to a breakthrough discovery that not only solved a problem that stood for more than half a century, but has major implications for the development of quantum computers and sensors. In a study published today in Nature, a team of engineers at UNSW Sydney has done what a celebrated scientist first suggested in 1961 was possible, but has eluded everyone since: controlling the nucleus of a single atom using only electric fields.
“This discovery means that we now have a pathway to build quantum computers using single-atom spins without the need for any oscillating magnetic field for their operation,” says UNSW’s Scientia Professor of Quantum Engineering Andrea Morello. “Moreover, we can use these nuclei as exquisitely precise sensors of electric and magnetic fields, or to answer fundamental questions in quantum science.”
That a nuclear spin can be controlled with electric, instead of magnetic fields, has far-reaching consequences. Generating magnetic fields requires large coils and high currents, while the laws of physics dictate that it is difficult to confine magnetic fields to very small spaces—they tend to have a wide area of influence. Electric fields, on the other hand, can be produced at the tip of a tiny electrode, and they fall off very sharply away from the tip. This will make control of individual atoms placed in nanoelectronic devices much easier.