Menu

Blog

Archive for the ‘particle physics’ category: Page 379

May 23, 2020

Scientists solve half-century-old magnesium dimer mystery

Posted by in categories: chemistry, particle physics, quantum physics

Magnesium dimer (Mg2) is a fragile molecule consisting of two weakly interacting atoms held together by the laws of quantum mechanics. It has recently emerged as a potential probe for understanding fundamental phenomena at the intersection of chemistry and ultracold physics, but its use has been thwarted by a half-century-old enigma—five high-lying vibrational states that hold the key to understanding how the magnesium atoms interact but have eluded detection for 50 years.

The lowest fourteen Mg2 vibrational states were discovered in the 1970s, but both early and recent experiments should have observed a total of nineteen states. Like a quantum cold case, experimental efforts to find the last five failed, and Mg2 was almost forgotten. Until now.

Piotr Piecuch, Michigan State University Distinguished Professor and MSU Foundation Professor of chemistry, along with College of Natural Science Department of Chemistry graduate students Stephen H. Yuwono and Ilias Magoulas, developed new, computationally derived evidence that not only made a in first-principles quantum chemistry, but finally solved the 50-year-old Mg2 mystery.

May 23, 2020

Swarm probes weakening of Earth’s magnetic field

Posted by in categories: particle physics, satellites

In an area stretching from Africa to South America, Earth’s magnetic field is gradually weakening. This strange behaviour has geophysicists puzzled and is causing technical disturbances in satellites orbiting Earth. Scientists are using data from ESA’s Swarm constellation to improve our understanding of this area known as the ‘South Atlantic Anomaly.’

Earth’s is vital to life on our planet. It is a complex and dynamic force that protects us from and charged particles from the Sun. The magnetic field is largely generated by an ocean of superheated, swirling liquid iron that makes up the outer core around 3000 km beneath our feet. Acting as a spinning conductor in a bicycle dynamo, it creates electrical currents, which in turn, generate our continuously changing .

This field is far from static and varies both in strength and direction. For example, recent studies have shown that the position of the north is changing rapidly.

May 22, 2020

How Many Qubits Are Needed for Quantum Supremacy?

Posted by in categories: particle physics, quantum physics, supercomputing

Quantum computers theoretically can prove more powerful than any supercomputer, and now scientists calculate just what quantum computers need to attain such “quantum supremacy,” and whether or not Google achieved it with its claims last year.

Whereas classical computers switch transistors either on or off to symbolize data as ones or zeroes, quantum computers use quantum bits—qubits—that, because of the bizarre nature of quantum physics, can be in a state of superposition where they are both 1 and 0 simultaneously.

Superposition lets one qubit perform two calculations at once, and if two qubits are linked through a quantum effect known as entanglement, they can help perform 22 or four calculations simultaneously; three qubits, 23 or eight calculations; and so on. In principle, a quantum computer with 300 qubits could perform more calculations in an instant than there are atoms in the visible universe.

May 21, 2020

Producing Axions from Photon Collisions

Posted by in categories: cosmology, particle physics

The collision of two intense light beams may produce detectable signatures of dark matter particles called axions.

Axions—hypothetical particles that are much lighter than electrons—could hold the key to important physics puzzles, from the matter–antimatter asymmetry to the nature of dark matter. So far, the strongest constraints on their properties, such as their mass and how they couple to photons, come from astrophysical measurements that look for axions produced by photons interacting with magnetic fields inside the Sun. Now, Konstantin Beyer at the University of Oxford, UK, and colleagues propose a lab-scale experiment based on colliding intense laser beams. The researchers say that, for an important range of axion masses, their approach would be as sensitive as astrophysical searches but much less dependent on hard-to-test models of astrophysical axion-generation processes.

The team’s scheme is a variation of the “light-shining-through-a-wall” (LSW) method of axion detection. In LSW, axions created by a laser beam propagating in a magnetic field would be detected after passing through a wall that shields the detector from the laser photons. The team’s new scheme uses two laser beams, whose collision may produce axions through a light–light scattering process. After passing through the wall, the axions would be converted into detectable photons by a magnetic field.

May 21, 2020

A Microscopic Account of Black Hole Entropy

Posted by in categories: cosmology, particle physics, quantum physics

String theory provides a microscopic description of the entropy of certain theoretical black holes—an important step toward understanding black hole thermodynamics.

In the 1970’s, theorists determined that black holes have entropy [1], a remarkable finding that points at analogies between these spacetime singularities and systems of particles, such as classical gases. The crucial proof was provided by Stephen Hawking, who demonstrated, using a quantum-mechanical framework, that black holes radiate as if they were black bodies with a specific temperature [2]. The analogy was completed by extending all four laws of thermodynamics to black holes [3]. In thermodynamics, entropy is an important bridge between the macroscopic and the microscopic world: In a gas, for instance, entropy relates macroscopic heat transfer to the number of available microscopic states of the gas molecules. Providing a similar microscopic explanation of black hole entropy is an important test for theories that aim to unify gravity and quantum mechanics.

May 21, 2020

Laser smashes light-speed record

Posted by in category: particle physics

Special relativity prevents any object with mass travelling at the speed of light, and the principle of causality – the notion that the cause comes before the effect – is used to rule out the possibility of superluminal (faster-than-light) travel by light itself. However, a pulse of light can have more than one speed because it is made up of light of different wavelengths. The individual waves travel at their own phase velocity, while the pulse itself travels with the group velocity. In a vacuum all the phase velocities and the group velocity are the same. In a dispersive medium, however, they are different because the refractive index is a function of wavelength, which means that the different wavelengths travel at different speeds. Wang and colleagues report evidence for a negative group velocity of −310 c, where c (=300 million metres per second) is the speed of light in vacuum.

Their experimental set-up is remarkably similar to that used to slow light to a speed of just 17 metres per second last year. It relies on using two lasers and a magnetic field to prepare a gas of caesium atoms in an excited state. This state exhibits strong amplification or gain at two wavelengths, and highly anomalous dispersion – that is, the refractive index changes rapidly with wavelength – in the region between these two peaks.

Wang and colleagues begin by using a third continuous-wave laser to confirm that there are two peaks in the gain spectrum and that the refractive index does indeed change rapidly with wavelength in between. Next they send a 3.7-microsecond long laser pulse into the caesium cell, which is 6 centimetres long, and show that, at the correct wavelength, it emerges from the cell 62 nanoseconds sooner than would be expected if it had travelled at the speed of light. 62 nanoseconds might not sound like much, but since it should only take 0.2 nanoseconds for the pulse to pass through the cell, this means that the pulse has been travelling at 310 times the speed of light. Moreover, unlike previous superluminal experiments, the input and output pulse shapes are essentially the same.

May 20, 2020

NASA uncovers evidence of bizarre parallel universe where physics, time operate in reverse

Posted by in categories: cosmology, particle physics

(WHDH) — Scientists at NASA have reportedly uncovered evidence of a bizarre parallel universe where the rules of physics and time appear to be operating in reverse.

Researchers conducting an experiment in Antarctica discovered particles from a universe that was born during the same Big Bang the created the one we live in, according to NewScientist.

A NASA team was using a giant balloon to carry electronic antennas into the sky above the frozen wastes of Antarctica when they encountered a “wind” of particles from outer space that were “a million times more powerful” than anything they had seen before, the news outlet reported.

May 20, 2020

Intermolecular vibrational energy transfer via microcavity strong light-matter coupling

Posted by in categories: biological, chemistry, engineering, nanotechnology, particle physics

Strong coupling between cavity photon modes and donor/acceptor molecules can form polaritons (hybrid particles made of a photon strongly coupled to an electric dipole) to facilitate selective vibrational energy transfer between molecules in the liquid phase. The process is typically arduous and hampered by weak intermolecular forces. In a new report now published on Science, Bo Xiang, and a team of scientists in materials science, engineering and biochemistry at the University of California, San Diego, U.S., reported a state-of-the-art strategy to engineer strong light-matter coupling. Using pump-probe and two-dimensional (2-D) infrared spectroscopy, Xiang et al. found that strong coupling in the cavity mode enhanced the vibrational energy transfer of two solute molecules. The team increased the energy transfer by increasing the cavity lifetime, suggesting the energy transfer process to be a polaritonic process. This pathway on vibrational energy transfer will open new directions for applications in remote chemistry, vibration polariton condensation and sensing mechanisms.

Vibrational energy transfer (VET) is a universal process ranging from chemical catalysis to biological signal transduction and molecular recognition. Selective intermolecular vibrational energy transfer (VET) from solute-to-solute is relatively rare due to weak intermolecular forces. As a result, intermolecular VET is often unclear in the presence of intramolecular vibrational redistribution (IVR). In this work, Xiang et al. detailed a state-of-the-art method to engineer intermolecular vibrational interactions via strong light-matter coupling. To accomplish this, they inserted a highly concentrated molecular sample into an optical microcavity or placed it onto a plasmonic nanostructure. The confined electromagnetic modes in the setup then reversibly interacted with collective macroscopic molecular vibrational polarization for hybridized light-matter states known as vibrational polaritons.

May 20, 2020

The Secrets behind Earth’s Multi-colored Glow

Posted by in categories: particle physics, space

Airglow is the constant, faint glow of Earth’s upper atmosphere created by the interaction between sunlight and particles in this region. The phenomenon is similar to auroras, but where auroras are driven by high-energy particles originating from the solar wind, airglow is energized by ordinary, day-to-day solar radiation.

Studying airglow gives scientists clues about the upper atmosphere’s temperature, density, and composition, and helps us trace how particles move through the region itself. Two NASA missions take advantage of our planet’s natural glow to study the upper atmosphere: ICON focuses on how charged and neutral gases in the upper atmosphere interact, while GOLD observes what’s driving change — the Sun, Earth’s magnetic field or the lower atmosphere — in the region.

By watching and imaging airglow, the two missions enable scientists to tease out how Earth’s weather and space intersect, dictating the region’s complex behavior. https://go.nasa.gov/2RJax4x

May 20, 2020

Researchers build hybrid quantum system

Posted by in categories: computing, particle physics, quantum physics

Physicists at the National Institute of Standards and Technology have boosted their control of the fundamental properties of molecules at the quantum level by linking or “entangling” an electrically charged atom and an electrically charged molecule, showcasing a way to build hybrid quantum information systems that could manipulate, store and transmit different forms of data.

Described in a Nature paper posted online May 20, the new NIST method could help build large-scale quantum computers and networks by connecting quantum bits (qubits) based on otherwise incompatible hardware designs and operating frequencies. Mixed-platform quantum systems could offer versatility like that of conventional computer systems, which, for example, can exchange data among an electronic processor, an optical disc, and a magnetic hard drive.

The NIST experiments successfully entangled the properties of an electron in the atomic ion with the rotational states of the molecule so that measurements of one particle would control the properties of the other. The research builds on the same group’s 2017 demonstration of quantum control of a molecule, which extended techniques long used to manipulate atoms to the more complicated and potentially more fruitful arena offered by molecules, composed of multiple atoms bonded together.