Menu

Blog

Archive for the ‘particle physics’ category: Page 348

Apr 27, 2021

Google performed the first quantum simulation of a chemical reaction

Posted by in categories: chemistry, computing, particle physics, quantum physics

Circa 2020 o.,.o!


By Leah Crane.

Google researchers have used a quantum computer to simulate a chemical reaction for the first time. The reaction is a simple one, but this marks a step towards finding a practical use for quantum computers.

Continue reading “Google performed the first quantum simulation of a chemical reaction” »

Apr 27, 2021

Physicists net neutron star gold from measurement of lead

Posted by in categories: chemistry, particle physics, space

Nuclear physicists have made a new, highly accurate measurement of the thickness of the neutron “skin” that encompasses the lead nucleus in experiments conducted at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility and just published in Physical Review Letters. The result, which revealed a neutron skin thickness of .28 millionths of a nanometer, has important implications for the structure and size of neutron stars.

The protons and neutrons that form the nucleus at the heart of every atom in the universe help determine each atom’s identity and properties. Nuclear physicists are studying different nuclei to learn more about how these protons and neutrons act inside the nucleus. The Lead Radius Experiment collaboration, called PREx (after the chemical symbol for lead, Pb), is studying the fine details of how protons and neutrons are distributed in lead nuclei.

“The question is about where the neutrons are in lead. Lead is a heavy nucleus—there’s extra neutrons, but as far as the is concerned, an equal mix of protons and neutrons works better,” said Kent Paschke, a professor at the University of Virginia and experiment co-spokesperson.

Apr 25, 2021

Little Swirling Mysteries: Dynamics of Ultrasmall, Ultrafast Groups of Atoms Uncovered

Posted by in categories: computing, particle physics

Exploring and manipulating the behavior of polar vortices in material may lead to new technology for faster data transfer and storage. Researchers used the Advanced Photon Source at Argonne and the Linac Coherent Light Source at SLAC to learn more.

Our high-speed, high-bandwidth world constantly requires new ways to process and store information. Semiconductors and magnetic materials have made up the bulk of data storage devices for decades. In recent years, however, researchers and engineers have turned to ferroelectric materials, a type of crystal that can be manipulated with electricity.

In 2016, the study of ferroelectrics got more interesting with the discovery of polar vortices — essentially spiral-shaped groupings of atoms — within the structure of the material. Now a team of researchers led by the U.S. Department of Energy’s (DOE) Argonne National Laboratory has uncovered new insights into the behavior of these vortices, insights that may be the first step toward using them for fast, versatile data processing and storage.

Apr 25, 2021

Have dark bosons been spotted in ytterbium isotopes?

Posted by in category: particle physics

Circa 2020 o.o


Independent spectroscopy studies give equivocal results.

Apr 25, 2021

Axion particle production in a laser-induced dynamical spacetime

Posted by in category: particle physics

We consider the dynamics of a charged particle (e.g., an electron) oscillating in a laser field in flat spacetime and describe it in terms of the variable mass metric. By applying Einstein’s equivalence principle, we show that, after representing the electron motion in a time-dependent manner, the variable mass metric takes the form of the Friedmann–Lemaître–Robertson–Walker metric. We quantize a pseudo-scalar field in this spacetime and derive the production rate of electrically neutral, spinless particles. We show that this approach can provide an alternative experimental method to axion searches.

Apr 24, 2021

Reconstructing thousands of particles in one go at the CERN LHC with TensorFlow

Posted by in category: particle physics

Learn how engineers at the CERN LHC use TensorFlow to reconstruct thousands of particles in one go in this guest article by Jan Kieseler.

Apr 22, 2021

Levitation That’s No Trick: Scientists to Perform “Touchless” Chemical Reactions

Posted by in categories: chemistry, particle physics

Levitation has long been a staple of magic tricks and movies. But in the lab, it’s no trick. Scientists can levitate droplets of liquid, though mixing them and observing the reactions has been challenging. The pay-off, however, could be big as it would allow researchers to conduct contact-free experiments without containers or handling that might affect the outcome. Now, a team reporting in ACS’ Analytical Chemistry has developed a method to do just that.

Scientists have made devices to levitate small objects, but most methods require the object to have certain physical properties, such as electric charge or magnetism. In contrast, acoustic levitation, which uses sound waves to suspend an object in a gas, doesn’t rely on such properties. Yet existing devices for acoustic levitation and mixing of single particles or droplets are complex, and it is difficult to obtain measurements from them as a chemical reaction is happening. Stephen Brotton and Ralf Kaiser wanted to develop a versatile technique for the contactless control of two chemically distinct droplets, with a set of probes to follow the reaction as the droplets merge.

Apr 22, 2021

The Fuss Over Phosphorus

Posted by in categories: biological, chemistry, climatology, particle physics, space

Phosphorus, the element critical for life´s origin and life on Earth, may be even Venus.


Scientists studying the origin of life in the universe often focus on a few critical elements, particularly carbon, hydrogen, and oxygen. But two new papers highlight the importance of phosphorus for biology: an assessment of where things stand with a recent claim about possible life in the clouds of Venus, and a look at how reduced phosphorus compounds produced by lightning might have been critical for life early in our own planet’s history.

First a little biochemistry: Phosphine is a reduced phosphorus compound with one phosphorus atom and three hydrogen atoms. Phosphorus is also found in its reduced form in the phosphide mineral schreibersite, in which the phosphorus atom binds to three metal atoms (either iron or nickel). In its reduced form, phosphorus is much more reactive and useful for life than is phosphate, where the phosphorus atom binds to four oxygen atoms. Phosphorus is also the element that is most enriched in biological molecules as compared to non-biological molecules, so it’s not a bad place to start when you’re hunting for life.

Continue reading “The Fuss Over Phosphorus” »

Apr 20, 2021

Electron-Ion Collider: The Future of Particle Accelerators Is Here

Posted by in categories: futurism, particle physics

Behind the scenes of the Electron-Ion Collider, green accelerators that waste no energy, and chiral magnetic effect results debuting this summer.

When the Electron Ion Collider received the go-ahead in January 2020, it became the only new major accelerator in the works anywhere in the world.

“All the stars aligned,” said Elke-Caroline Aschenauer, Brookhaven National Laboratory Staff Scientist and a leader in developing the EIC plans. “We have the technology to build this unique particle accelerator and detector to do the measurements that, together with the underlying theory, can for the first time provide answers to longstanding fundamental questions in nuclear physics.”

Apr 19, 2021

Ultracold atom interferometry in space

Posted by in categories: particle physics, space

Conducting atom-optical experiments in space is interesting for fundamental physics and challenging due to different environment compared to ground. Here the authors report matter-wave interferometry in space using atomic BECs in a sounding rocket.