Toggle light / dark theme

The proton is a composite particle made up of fundamental building blocks of quarks and gluons. These components and their interactions determine the proton’s structure, including its electrical charges and currents. This structure deforms when exposed to external electric and magnetic (EM) fields, a phenomenon known as polarizability. The EM polarizabilities are a measure of the stiffness against the deformation induced by EM fields. By measuring the EM polarizabilities, scientists learn about the internal structure of the proton.

This knowledge helps to validate of how nucleons (protons and neutrons) form by comparing the results to theoretical descriptions of gamma-ray scattering from nucleons. Scientists call this scattering process Compton scattering.

When scientists examine the at a distance and scale where EM responses dominate, they can determine values of EM polarizabilities with high precision. To do so, they use the theoretical frame of Effective Field Theories (EFTs). The EFTs hold the promise of matching the description of the nucleon structure at low energies to the current theory of the strong nuclear force, called (QCD). In this research, scientists validated EFTs using proton Compton scattering. This approach also validated the framework and methodology that underlie EFTs.

Today, one of the biggest paradoxes in the universe threatens to unravel modern science: the black hole information paradox. Every object in the universe is composed of particles with unique quantum properties and even if an object is destroyed, its quantum information is never permanently deleted. But what happens to that information when an object enters a black hole? Fabio Pacucci investigates. [Directed by Artrake Studio, narrated by Addison Anderson, music by WORKPLAYWORK / Cem Misirlioglu].

Photons, particles that represent a quantum of light, have shown great potential for the development of new quantum technologies. More specifically, physicists have been exploring the possibility of creating photonic qubits (quantum units of information) that can be transmitted over long distances using photons.

Despite some promising results, several obstacles still need to be overcome before photonic qubits can be successfully implemented on a large-scale. For instance, are known to be susceptible to propagation loss (i.e., a loss of energy, radiation, or signals as it travels from one point to another) and do not interact with one another.

Researchers at University of Copenhagen in Denmark, Instituto de Física Fundamental IFF-CSIC in Spain, and Ruhr-Universität Bochum in Germany have recently devised a strategy that could help to overcome one of these challenges, namely the lack of photon-photon interactions. Their method, presented in a paper published in Nature Physics, could eventually aid the development of more sophisticated quantum devices.

Richard Gott, co author with Neil De Grasse Tyson of “Welcome to The Universe” argues the key to understanding the origin of the universe may be the concept of closed time like curves. These are solutions to Einstein’s theory that may allow time travel into the past. in this film, Richard Gott of Princeton University explains the model he developed with LIxin Li. Gott explores the possibility of a closed time like curve forming in the early universe and how this might lead to the amazing property of the universe being able to create itself. Gott is one of the leading experts in time travel solution to Einstein’s equations and is author of the book “Time Travel In Einstein’s Universe”.
This film is part of a series of films exploring competing models of th early universe with the creators of those models. We have interviewed Stephen Hawking, Roger Penrose, Alan Guth and many other leaders of the field. To see other episodes, click on the link below:

We would like to thank the following who helped us are this movie:
Animations:
Morn 1415
David Yates.
NASA
ESA
M Buser, E Kajari, and WP Schleich.
Storyblocks.
Nina McCurdy, Anthony Aguirre, Joel Primack, Nancy Abrams.
Pixabay.
Ziri Younsi.

Audio & music from:
Shutterstock.
Audio Network.
Photography Rob, Speakers Corner Uk.
https://www.youtube.com/channel/UCpx7TeFcveBzrUB4I1Fc9iQ/vid…_polymer=1

Thanks to:
University College London.
Princeton University Press.
Howard Walwyn Fine Antique Clocks.

Timeline:
00:00 Introduction.
1:07 Working with Penzias and Wilson.
1:42 relativity and time.
2:58 the block universe.
4:00 time travel in Einstein’s universe.
4:54 Godel and time travel into the past.
5:54 Cosmic Strings.
7:43 Cosmic inflation.
8:50 Bubble Universes.
9:56 Lixin Li.
12:11 The Gott Li self creating universe model.
14:17 Jinn Particles.
14:35 How to escape a time loop.
16:14 Experimental test.
20:05 Hawking’s Chronology Protection Conjecture.
23:46 The Arrow of Time.
29:00 The Second Law.
33:00 Answering Hiscock’s criticisms.
40:07 fine tuning.
40:46 Boltzmann Brains.
44:37 Quantum Entanglement and Wormholes.
46:04 Uncertainty.
47:11 A Universe from Nothing.
50:25 Summing Up

In July, particle physicists in the US completed the Snowmass process—a decadal community planning exercise that forges a vision of scientific priorities and future facilities. Organized by the Division of Particles and Fields of the American Physical Society, this year’s Snowmass meetings considered a range of plans including neutrino experiments and muon colliders. One new idea that generated buzz was the Cool Copper Collider (or C3 for short). This proposal calls for accelerating particles with conventional, or “normal-conducting,” radio frequency (RF) cavities—as opposed to the superconducting RF cavities used in modern colliders. This “retro” design could potentially achieve 500 GeV collision energies with an 8-km-long linear collider, making it significantly smaller and presumably less expensive than a comparable superconducting design.

The goal of the C3 project would be to operate as a Higgs factory, which—in particle-physics parlance—is a collider that smashes together electrons and their antimatter partners, called positrons, at energies above 250 GeV. Such a facility would make loads of Higgs bosons with less of the mess that comes from smashing protons and antiprotons together—as is done at the Large Hadron Collider (LHC) in Switzerland. A Higgs factory would give more precise measurements than the LHC of the couplings between Higgs bosons and other particles, potentially uncovering small discrepancies that could lead to new theories of particle physics. “I think the Higgs is the most interesting particle that’s out there,” says Emilio Nanni from the SLAC National Accelerator Laboratory in California. “And we should absolutely build a machine that’s dedicated to studying it with as much precision as possible.”

But an outsider might wonder why another Higgs-factory proposal is being added to the particle-physics menu. A similar factory design—the International Linear Collider (ILC)—has been in the works for years, but that project is presently stalled, as the Japanese government has not yet confirmed its support for building the facility in Japan. Waiting in the wings are several other large particle-physics proposals, including CERN’s Future Circular Collider and China’s Circular Electron Positron Collider.

Tiny particles are interconnected despite sometimes being thousands of kilometers apart—Albert Einstein called this “spooky action at a distance.” Something that would be inexplicable by the laws of classical physics is a fundamental part of quantum physics. Entanglement like this can occur between multiple quantum particles, meaning that certain properties of the particles are intimately linked with each other.

Entangled systems containing multiple offer significant benefits in implementing quantum algorithms, which have the potential to be used in communications, or quantum computing. Researchers from Paderborn University have been working with colleagues from Ulm University to develop the first programmable optical quantum memory. The study was published as an “Editor’s suggestion” in the Physical Review Letters journal.

Three scientists who laid the groundwork for the understanding of the odd “entangling” behavior of quantum particles have received the 2022 Nobel Prize in Physics.

French physicist Alain Aspect, Austria’s Anton Zeilinger and American John Clauser were honored for their experiments exploring the nature of entangled quantum particles.

Some solid materials have a memory of how they have previously been stretched out, which impacts how they respond to these kinds of deformations in the future. A new Penn State study lends insight into memory formation in the foams and emulsions common in food products and pharmaceuticals and provides a new method to erase this memory, which could guide how materials are prepared for future use.

“A crease in a piece of paper serves as a memory of being folded or crumpled,” said Nathan Keim, associate research professor of physics at Penn State who led the study. “A lot of other form memories when they are deformed, heated up, or cooled down, and you might not know it unless you ask the right questions. Improving our understanding of how to write, read, and erase memories provides new opportunities for diagnostics and programming of materials. We can find out the history of a material by doing some tests or erase a material’s memory and program a new one to prepare it for consumer or industrial use.”

The researchers studied memory in a type of material called disordered solids, which have particles that are often erratically arranged. For example, ice cream is a disordered solid made up of a combination of ice crystals, fat droplets, and air pockets mixed together in a random way. This is in stark contrast to materials with “crystalline structures,” with particles arranged in highly ordered rows and columns. Disordered solids are common in food sciences, , and pharmaceuticals and include foams like ice cream and emulsions like mayonnaise.

STOCKHOLM — Three scientists jointly won this year’s Nobel Prize in physics Tuesday for proving that tiny particles could retain a connection with each other even when separated, a phenomenon once doubted but now being explored for potential real-world applications such as encrypting information.

Frenchman Alain Aspect, American John F. Clauser and Austrian Anton Zeilinger were cited by the Royal Swedish Academy of Sciences for experiments proving the “totally crazy” field of quantum entanglements to be all too real. They demonstrated that unseen particles, such as photons, can be linked, or “entangled,” with each other even when they are separated by large distances.

It all goes back to a feature of the universe that even baffled Albert Einstein and connects matter and light in a tangled, chaotic way.