Menu

Blog

Archive for the ‘particle physics’ category: Page 220

Dec 30, 2022

Physicists Discover a New Way to ‘See’ Objects Without Looking at Them

Posted by in categories: particle physics, quantum physics

Ordinarily, to measure an object we must interact with it in some way. Whether it’s by a prod or a poke, an echo of sound waves, or a shower of light, it’s near impossible to look without touching.

In the world of quantum physics, there are some exceptions to this rule.

Researchers from Aalto University in Finland propose a way to ‘see’ a microwave pulse without the absorption and re-emission of any light waves. It’s an example of a special interaction-free measurement, where something is observed without being rattled by a mediating particle.

Dec 29, 2022

First results from LHAASO place tighter constraints on dark matter’s lifetime

Posted by in categories: cosmology, particle physics

Scientists from the Large High Altitude Air Shower Observatory (LHAASO) have presented roughly 1.5 years of observational data, calculating new limits on the lifetime of heavy dark matter particles that have masses between 105 and 109 giga-electron volts.

The study, titled “Constraints on heavy decaying dark matter from 570 days of LHAASO observations,” was recently published in Physics Review Letters.

The gravitational model of the Milky Way shows that there is a very high density of dark matter in the galactic center, and the gamma rays produced by the decay of this dark matter will radiate from the to the surroundings for hundreds of light-years or even thousands of light-years. However, for a long time, the observation of ultra-high-energy gamma rays produced by heavy dark matter has been complicated by the presence of other background radiation.

Dec 29, 2022

A Startup Has Begun Releasing Chemicals Into the Stratosphere

Posted by in categories: chemistry, climatology, engineering, particle physics, sustainability

Recently, a start-up company called Make Sunsets has begun releasing chemicals into the stratosphere as a form of geoengineering that is intended to help climate change. However, many are very hesitant about the startup and the result of what they are doing.

For perspective, geoengineering is when chemical particles are released into the stratosphere to manipulate the weather or climate. The theory is that when sulfur is released into the atmosphere that it mimics a natural process that occurs after volcanoes and that by doing this intentionally, we could ease global warming.

While it isn’t difficult to do this, it is very controversial. The reason for this is that it could potentially have dangerous side effects. Additionally, because some regions could endure worse side effects, it could cause issues across international lines.

Dec 28, 2022

Scientists have recreated the first matter of the universe

Posted by in categories: cosmology, particle physics

What were the first moments of the Universe like? It’s a mystery that scientists have been trying to unravel for decades. The ALICE collaboration at CERN is a specialist in the subject: this detector (A Large Ion Collider Experiment) was designed to study quark-gluon plasma, a phase of matter that would have existed just after the Big Bang. And the team recently succeeded in recreating and characterizing this very first hypothetical material, using the Large Hadron Collider (LHC).

Dec 28, 2022

Is all matter made up of both particles and waves?

Posted by in categories: particle physics, quantum physics

According to quantum mechanics, the physics theory that describes the zoo of subatomic particles, all matter can be described as both particles and waves. But is it real?

Dec 27, 2022

Seemingly Magical — How To Fire Projectiles Through Materials Without Breaking Anything

Posted by in categories: nanotechnology, particle physics

Researchers at Vienna University of Technology have discovered why sometimes spectacular micro-explosions occur and other times ultra-thin layers of material remain almost intact when charged particles are shot through them.

It may seem like magic that some materials can withstand being shot through with fast, electrically charged ions without exhibiting holes afterward. This phenomenon, which would be impossible at the macroscopic level, becomes possible at the level of individual particles. However, not all materials exhibit this behavior. In recent years, various research groups have conducted experiments with varying results.

Vienna University of Technology researchers have been able to provide a detailed explanation for why some materials are perforated while others are not. This is of particular interest in the processing of thin membranes, which are designed to have tailor-made nano-pores that can trap, hold, or allow specific atoms or molecules to pass through.

Dec 26, 2022

China Shows Off High-Powered Laser That Can ‘Write’ In The Air

Posted by in categories: holograms, particle physics

Movie plots often use holograms to give the scene a scientific or cooler essence. However, researchers have made these futuristic scenes a reality. According to reports, Scientists in China showcased a laser that can create Chinese characters out of thin air.

Although lasers often have a long-range, you can only see them when the light lands on a surface. However, dust particles made an exception. But this is entirely different and looks like something out of a sci-fi movie.

Scientists have already used lasers to create a range of optical illusions. However, it required mediums like dust and clouds to do so. But according to reports, with the new device, researchers are able to draw patterns using ultra-short laser pulses.

Dec 25, 2022

A startup says it’s begun releasing particles into the atmosphere, in an effort to tweak the climate

Posted by in categories: climatology, engineering, particle physics

Make Sunsets is already attempting to earn revenue for geoengineering, a move likely to provoke widespread criticism.

Dec 25, 2022

The Universe May Be More Unstable Than You Think

Posted by in categories: information science, particle physics

In particle physics, particles are constantly interacting and interfering with all the other kinds of particles, but the strength of those interactions depend on the particle masses. So, when we try to evaluate anything involving the Higgs boson – like, say, its ability to maintain the separation between the electromagnetic and weak nuclear forces – we also need to pay attention to how the other particles will interfere with that effort. And since the top quark is handily the biggest of the bunch (the next largest, the bottom quark, weighs a mere 5 GeV) it’s essentially the only other particle we need to care about.

When physicists first calculated the stability of the universe, as determined by the Higgs boson’s ability to maintain the separation of the electroweak force, they didn’t know the mass of either the Higgs itself or the top quark. Now we do: The top quark weighs around 175 GeV, and the Higgs around 125 GeV.

Plugging those two numbers into the stability equations reveals that the universe is… metastable. This is different than stable, which would mean that there’s no chance of the universe splitting apart instantly, but also different than unstable, which would mean it already happened.

Dec 23, 2022

Space manufacturing pioneer Joe Pawelski shares his vision for the future — episode 147

Posted by in categories: alien life, economics, particle physics, satellites, sustainability

Future of in space manufacturing, next 10 years of cisLunar, getting kids involved in stem, and more with Joe Pawelski Architect of CisLunar.

Feedback/idea form for show.
https://docs.google.com/forms/d/e/1FAIpQLSdbZjVCZmJ-TLPWLCsI…sp=sf_link.

Continue reading “Space manufacturing pioneer Joe Pawelski shares his vision for the future — episode 147” »