Toggle light / dark theme

In 2010, Mike Williams traveled from London to Amsterdam for a physics workshop. Everyone there was abuzz with the possibilities—and possible drawbacks—of machine learning, which Williams had recently proposed incorporating into the LHCb experiment. Williams, now a professor of physics and leader of an experimental group at the Massachusetts Institute of Technology, left the workshop motivated to make it work.

LHCb is one of the four main experiments at the Large Hadron Collider at CERN. Every second, inside the detectors for each of those experiments, proton beams cross 40 million times, generating hundreds of millions of proton collisions, each of which produces an array of particles flying off in different directions. Williams wanted to use machine learning to improve LHCb’s trigger system, a set of decision-making algorithms programmed to recognize and save only collisions that display interesting signals—and discard the rest.

Of the 40 million crossings, or events, that happen each second in the ATLAS and CMS detectors—the two largest particle detectors at the LHC—data from only a few thousand are saved, says Tae Min Hong, an associate professor of physics and astronomy at the University of Pittsburgh and a member of the ATLAS collaboration. “Our job in the trigger system is to never throw away anything that could be important,” he says.

Our current best understanding of the universe requires the existence of an invisible substance known as dark matter. The exact nature of dark matter (or its actual existence) is still unknown, and there are multiple competing theories to explain the effect of this matter on the Universe. An exciting new one is called Recycled Dark Matter.

The idea behind Recycled Dark Matter is that dark matter is produced in a specific mechanism that researchers have dubbed “recycling” in a paper awaiting peer-review, because dark matter forms twice in the universe, with weird quantum mechanics and a black hole phase in the middle. All of that just a few instants after the beginning of the cosmos.

So, let’s take a journey back about 13.8 billion years. You don’t have to move, because the Big Bang happened everywhere. At the very moment that time as we know it starts ticking, the fundamental forces and the building blocks of particles we know of (the Standard Model) are in equilibrium with the Dark Sector (we know it sounds like a bad fantasy novel location, but bear with).

Scientists from the UK and South Korea have discovered a way to create laser pulses 1,000 times stronger than currently possible. Using computer simulations, they have discovered that a new way of compressing the light can drastically increase its intensity to such an extent that it can extract particles from a vacuum. This new technique could open up doors for important discoveries into the very nature of matter.

Uncover the nature of matter

Researchers from the University of Strathclyde, Ulsan National Institute of Science & Technology (UNIST), and Gwangju Institute of Science and Technology (GIST) have proposed a simple idea to revolutionize the next generation of lasers. They suggest using the gradient in the density of plasma, which is fully ionized matter, to cause photons to bunch together. This is similar to the way a group of cars bunches up as they encounter a steep hill. If this technique is successful, it could increase the power of lasers by more than one million times from what is currently achievable.

You’re familiar with the states of matter we encounter daily – such as solid, liquid, and gas – but in more exotic and extreme conditions, new states can appear, and scientists from the US and China found one earlier this year.

They’re calling it the chiral bose-liquid state, and as with every new arrangement of particles we discover, it can tell us more about the fabric and the mechanisms of the Universe around us – and in particular, at the super-small quantum scale.

States of matter describe how particles can interact with one another, giving rise to structures and various ways of behaving. Lock atoms in place, and you have a solid. Allow them to flow, you have a liquid or gas. Force charged partnerships apart, you have a plasma.

Teleportation might just be the next big thing – and no, we’re not talking about sci-fi dreams! Scientists are seriously delving into quantum teleportation, where information about particles is transmitted instantly. It’s currently happening on the teeny-tiny scale, but progress is zooming at warp speed. While teleporting your morning commute might take a bit, the future seems to be knocking at the teleportation door, and it’s saying, “Open up, it’s science!” 🚀🔮

#brightside.

Animation is created by Bright Side.

Music from TheSoul Sound: https://thesoul-sound.com/

Listen to Bright Side on:
Spotify — https://open.spotify.com/show/0hUkPxD34jRLrMrJux4VxV
Apple Podcast — https://podcasts.apple.com/podcast/idhttps-podcasts-apple-co…1554898078

Our Social Media:

In a breakthrough at CERN

Established in 1954 and headquartered in Geneva, Switzerland, CERN is a European research organization that operates the Large Hadron Collider (LHC), the largest particle physics laboratory in the world. Its full name is the European Organization for Nuclear Research (French: Organisation européenne pour la recherche nucléaire) and the CERN acronym comes from the French Conseil Européen pour la Recherche Nucléaire. CERN’s main mission is to study the fundamental structure of the universe through the use of advanced particle accelerators and detectors.

A new method of creating laser pulses, more than 1,000 times as powerful as those currently in existence, has been proposed by scientists in the UK and South Korea.

The scientists have used in joint research to demonstrate a new way of compressing light to increase its intensity sufficiently to extract particles from vacuum and study the nature of matter. To achieve this the three groups have come together to produce a very special type of mirror—one that not only reflects pulses of light but compresses them in time by a factor of more than two hundred times, with further compression possible.

The groups from the University of Strathclyde, UNIST and GIST propose a simple idea—to use the gradient in the density of plasma, which is fully ionized matter, to cause photons to “bunch,” analogous to the way a stretched-out group of cars bunch up as they encounter a steep hill. This could revolutionize the next generation of lasers to enable their powers to increase by more than one million times from what is achievable now.

Absolutely empty—that is how most of us envision the vacuum. Yet, in reality, it is filled with an energetic flickering: the quantum fluctuations.

Experts are currently preparing a laser experiment intended to verify these vacuum fluctuations in a novel way, which could potentially provide clues to new laws in physics. A research team from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) has developed a series of proposals designed to help conduct the experiment more effectively—thus increasing the chances of success. The team presents its findings in Physical Review D.

The physics world has long been aware that the vacuum is not entirely void but is filled with vacuum fluctuations—an ominous quantum flickering in time and space. Although it cannot be captured directly, its influence can be indirectly observed, for example, through changes in the electromagnetic fields of tiny particles.

This work explores the potential for additive manufacturing to be used to fabricate ultraviolet light-blocking or photocatalytic materials with in situ resource utilization, using a titania foam as a model system. Direct foam writing was used to deposit titania-based foam lines in microgravity using parabolic flight. The wet foam was based on titania primary particles and a titania precursor (Ti (IV) bis(ammonium lactato) dihydroxide). Lines were also printed in Earth gravity and their resulting properties were compared with regard to average cross-sectional area, height, and width. The cross-sectional height was found to be higher when printing at low speeds in microgravity compared to Earth gravity, but lower when printing at high speeds in microgravity compared to Earth gravity. It was also observed that volumetric flow rate was generally higher when writing in Earth gravity compared to microgravity. Additionally, heterogeneous photocatalytic degradation of methylene blue was studied to characterize the foams for water purification and was found to generally increase as the foam heat treatment temperature increased. Optical and scanning electron microscopies were used to observe foam morphology. X-ray diffraction spectroscopy was used to study the change in crystallinity with respect to temperature. Contact angle of water was found to increase on the surface of the foam as ultraviolet light exposure time increased. Additionally, the foam blocked more ultraviolet light over time when exposed to ultraviolet radiation. Finally, bubble coarsening measurements were taken to observe bubble radius growth over time.