Jun 12, 2023
Atom-what? A Brief Introduction to the Atompunk Genre
Posted by Jose Ruben Rodriguez Fuentes in category: particle physics
What is atompunk? Learn more about this sci-fi sub-genre, and some recommended books here!
What is atompunk? Learn more about this sci-fi sub-genre, and some recommended books here!
A group of physicists at the University of Basel, in Switzerland, has found via experimentation that the Einstein-Podolsky-Rosen paradox still holds even when scaled up. Paolo Colciaghi, Yifan Li, Philipp Treutlein and Tilman Zibold describe their experiment in Physical Review X.
In 1935, Albert Einstein, Boris Podolsky and Nathan Rosen published a paper outlining a thought experiment that suggested that quantum mechanics did not give a complete description of reality. They argued for the existence of “elements of reality” that were not part of quantum theory—and then went further by speculating that it should be possible to come up with a new theory that would contain such hidden variables.
Their experiment has since come to be known as the EPR paradox because of the contradictions it reveals, such as one particle in a system influencing other particles due to entanglement, and also that it can become possible to know more about the particles in a given system than should be allowed by the Heisenberg uncertainty principle.
Understanding the behavior of nuclear matter—including the quarks and gluons that make up the protons and neutrons of atomic nuclei—is extremely complicated. This is particularly true in our world, which is three dimensional. Mathematical techniques from condensed matter physics that consider interactions in just one spatial dimension (plus time) greatly simplify the challenge.
Using this two-dimensional approach, scientists solved the complex equations that describe how low-energy excitations ripple through a system of dense nuclear matter. This work indicates that the center of neutron stars, where such dense nuclear matter exists in nature, may be described by an unexpected form.
Being able to understand the quark interactions in two dimensions opens a new window into understanding neutron stars, the densest form of matter in the universe. The approach could help advance the current “golden age” for studying these exotic stars. This surge in research success was triggered by recent discoveries of gravitational waves and electromagnetic emissions in the cosmos.
In the most massive test to date, physicists have probed a major paradox in quantum mechanics and found it still holds even for clouds of hundreds of atoms.
Using two entangled Bose-Einstein condensates, each consisting of 700 atoms, a team of physicists co-led by Paolo Colciaghi and Yifan Li of the University of Basel in Switzerland has shown that the Einstein-Podolsky-Rosen (EPR) paradox scales up.
Scientists have taken a significant step forward in the study of the properties of quarks and gluons, the particles that make up atomic nuclei, by resolving a long-standing issue with a theoretical calculation method known as “axial gauge.” MIT
MIT is an acronym for the Massachusetts Institute of Technology. It is a prestigious private research university in Cambridge, Massachusetts that was founded in 1861. It is organized into five Schools: architecture and planning; engineering; humanities, arts, and social sciences; management; and science. MIT’s impact includes many scientific breakthroughs and technological advances. Their stated goal is to make a better world through education, research, and innovation.
One thing all quantum computers have in common is the fact that they manipulate information encoded in quantum states. But that’s where the similarities end, because those quantum states can be induced in everything from superconducting circuits to trapped ions, ultra-cooled atoms, photons, and even silicon chips.
While some of these approaches have attracted more investment than others, we’re still a long way from the industry settling on a common platform. And in the world of academic research, experimentation still abounds.
Now, a team from the University of Chicago has taken crucial first steps towards building a quantum computer that can encode information in phonons, the fundamental quantum units that make up sound waves in much the same way that photons make up light beams.
Scientists have demonstrated entanglement and two-particle interference with phonon using an acoustic beam splitter.
Phonons are to sound what photons are to light. Photons are tiny packets of energy for light or electromagnetic waves. Similarly, phonons are packets of energy for sound waves. Each phonon represents the vibration of millions of atoms within a material.
Both photons and phonons are of central interest to quantum computing research, which exploits the properties of these quantum particles. However, phonons have proven challenging to study due to their susceptibility to noise and issues with scalability and detection.
Quantum information (QI) processing may be the next game changer in the evolution of technology, by providing unprecedented computational capabilities, security and detection sensitivities. Qubits, the basic hardware element for quantum information, are the building block for quantum computers and quantum information processing, but there is still much debate on which types of qubits are actually the best.
Research and development in this field is growing at astonishing paces to see which system or platform outruns the other. To mention a few, platforms as diverse as superconducting Josephson junctions, trapped ions, topological qubits, ultra-cold neutral atoms, or even diamond vacancies constitute the zoo of possibilities to make qubits.
So far, only a handful of qubit platforms have been demonstrated to have the potential for quantum computing, marking the checklist of high-fidelity controlled gates, easy qubit-qubit coupling, and good isolation from the environment, which means sufficiently long-lived coherence.