Menu

Blog

Archive for the ‘particle physics’ category: Page 167

Jun 12, 2023

Experiment shows Einstein-Podolsky-Rosen paradox scales up

Posted by in categories: particle physics, quantum physics

A group of physicists at the University of Basel, in Switzerland, has found via experimentation that the Einstein-Podolsky-Rosen paradox still holds even when scaled up. Paolo Colciaghi, Yifan Li, Philipp Treutlein and Tilman Zibold describe their experiment in Physical Review X.

In 1935, Albert Einstein, Boris Podolsky and Nathan Rosen published a paper outlining a that suggested that did not give a complete description of reality. They argued for the existence of “elements of reality” that were not part of quantum theory—and then went further by speculating that it should be possible to come up with a new theory that would contain such hidden variables.

Their experiment has since come to be known as the EPR paradox because of the contradictions it reveals, such as one particle in a system influencing other particles due to entanglement, and also that it can become possible to know more about the particles in a given system than should be allowed by the Heisenberg uncertainty principle.

Jun 12, 2023

A simple solution for nuclear matter in two dimensions

Posted by in categories: information science, mathematics, nuclear energy, particle physics, space

Understanding the behavior of nuclear matter—including the quarks and gluons that make up the protons and neutrons of atomic nuclei—is extremely complicated. This is particularly true in our world, which is three dimensional. Mathematical techniques from condensed matter physics that consider interactions in just one spatial dimension (plus time) greatly simplify the challenge.

Using this two-dimensional approach, scientists solved the complex equations that describe how low-energy excitations ripple through a system of dense nuclear matter. This work indicates that the center of stars, where such dense nuclear matter exists in nature, may be described by an unexpected form.

Being able to understand the quark interactions in two dimensions opens a new window into understanding neutron stars, the densest form of matter in the universe. The approach could help advance the current “golden age” for studying these exotic stars. This surge in research success was triggered by recent discoveries of gravitational waves and electromagnetic emissions in the cosmos.

Jun 12, 2023

Physicists Conduct The Most Massive Test Ever of The Einstein-Podolsky-Rosen Paradox

Posted by in categories: particle physics, quantum physics

In the most massive test to date, physicists have probed a major paradox in quantum mechanics and found it still holds even for clouds of hundreds of atoms.

Using two entangled Bose-Einstein condensates, each consisting of 700 atoms, a team of physicists co-led by Paolo Colciaghi and Yifan Li of the University of Basel in Switzerland has shown that the Einstein-Podolsky-Rosen (EPR) paradox scales up.

Continue reading “Physicists Conduct The Most Massive Test Ever of The Einstein-Podolsky-Rosen Paradox” »

Jun 12, 2023

A Quantum of Solace: Resolving a Mathematical Puzzle in Quarks and Gluons in Nuclear Matter

Posted by in categories: education, engineering, mathematics, particle physics

Scientists have taken a significant step forward in the study of the properties of quarks and gluons, the particles that make up atomic nuclei, by resolving a long-standing issue with a theoretical calculation method known as “axial gauge.” MIT

MIT is an acronym for the Massachusetts Institute of Technology. It is a prestigious private research university in Cambridge, Massachusetts that was founded in 1861. It is organized into five Schools: architecture and planning; engineering; humanities, arts, and social sciences; management; and science. MIT’s impact includes many scientific breakthroughs and technological advances. Their stated goal is to make a better world through education, research, and innovation.

Jun 12, 2023

The Humble Neutron Is About to Become More Powerful Than Ever

Posted by in category: particle physics

The unsung subatomic particle’s time is now.

Jun 11, 2023

Here Is the World’s First X-Ray of a Single Atom

Posted by in category: particle physics

Scientists just made the invisible visible.

Jun 11, 2023

Scientists Just Showed How to Make a Quantum Computer Using Sound Waves

Posted by in categories: computing, particle physics, quantum physics

One thing all quantum computers have in common is the fact that they manipulate information encoded in quantum states. But that’s where the similarities end, because those quantum states can be induced in everything from superconducting circuits to trapped ions, ultra-cooled atoms, photons, and even silicon chips.

While some of these approaches have attracted more investment than others, we’re still a long way from the industry settling on a common platform. And in the world of academic research, experimentation still abounds.

Now, a team from the University of Chicago has taken crucial first steps towards building a quantum computer that can encode information in phonons, the fundamental quantum units that make up sound waves in much the same way that photons make up light beams.

Jun 11, 2023

A new study shows how ‘splitting’ sound takes us one step closer to a new type of quantum computer

Posted by in categories: computing, particle physics, quantum physics

Scientists have demonstrated entanglement and two-particle interference with phonon using an acoustic beam splitter.

Phonons are to sound what photons are to light. Photons are tiny packets of energy for light or electromagnetic waves. Similarly, phonons are packets of energy for sound waves. Each phonon represents the vibration of millions of atoms within a material.

Both photons and phonons are of central interest to quantum computing research, which exploits the properties of these quantum particles. However, phonons have proven challenging to study due to their susceptibility to noise and issues with scalability and detection.

Jun 11, 2023

Research takes first steps towards realizing mechanical qubits

Posted by in categories: computing, particle physics, quantum physics, security

Quantum information (QI) processing may be the next game changer in the evolution of technology, by providing unprecedented computational capabilities, security and detection sensitivities. Qubits, the basic hardware element for quantum information, are the building block for quantum computers and quantum information processing, but there is still much debate on which types of qubits are actually the best.

Research and development in this field is growing at astonishing paces to see which system or platform outruns the other. To mention a few, platforms as diverse as superconducting Josephson junctions, trapped ions, topological qubits, ultra-cold neutral atoms, or even diamond vacancies constitute the zoo of possibilities to make qubits.

So far, only a handful of platforms have been demonstrated to have the potential for quantum computing, marking the checklist of high-fidelity controlled gates, easy qubit-qubit coupling, and good isolation from the environment, which means sufficiently long-lived coherence.

Jun 10, 2023

The Weirdest Particles in the Universe

Posted by in category: particle physics

Neutrinos at one time it was thought a type of neutrino would become a tachyon.


Neutrinos are bizarre and ubiquitous and may just break the rules of physics.