Toggle light / dark theme

Using graphene foam to filter toxins from drinking water

Some kinds of water pollution, such as algal blooms and plastics that foul rivers, lakes, and marine environments, lie in plain sight. But other contaminants are not so readily apparent, which makes their impact potentially more dangerous. Among these invisible substances is uranium. Leaching into water resources from mining operations, nuclear waste sites, or from natural subterranean deposits, the element can now be found flowing out of taps worldwide.

In the United States alone, “many areas are affected by uranium contamination, including the High Plains and Central Valley aquifers, which supply drinking water to 6 million people,” says Ahmed Sami Helal, a postdoc in the Department of Nuclear Science and Engineering. This contamination poses a near and present danger. “Even small concentrations are bad for human health,” says Ju Li, the Battelle Energy Alliance Professor of Nuclear Science and Engineering and professor of materials science and engineering.

Now, a team led by Li has devised a highly efficient method for removing uranium from drinking water. Applying an electric charge to graphene oxide foam, the researchers can capture uranium in solution, which precipitates out as a condensed solid crystal. The foam may be reused up to seven times without losing its electrochemical properties. “Within hours, our process can purify a large quantity of drinking water below the EPA limit for uranium,” says Li.

Nuclear ‘Power Balls’ May Make Meltdowns a Thing of the Past

Circa 2020


The basic idea behind all nuclear power plants is the same: Convert the heat created by nuclear fission into electricity. There are several ways to do this, but in each case it involves a delicate balancing act between safety and efficiency. A nuclear reactor works best when the core is really hot, but if it gets too hot it will cause a meltdown and the environment will get poisoned and people may die and it will take billions of dollars to clean up the mess.

The last time this happened was less than a decade ago, when a massive earthquake followed by a series of tsunamis caused a meltdown at the Fukushima Daiichi power plant in Japan. But a new generation of reactors coming online in the next few years aims to make these kinds of disasters a thing of the past. Not only will these reactors be smaller and more efficient than current nuclear power plants, but their designers claim they’ll be virtually meltdown-proof. Their secret? Millions of submillimeter-size grains of uranium individually wrapped in protective shells. It’s called triso fuel, and it’s like a radioactive gobstopper.

Triso— short for “tristructural isotropic”—fuel is made from a mixture of low enriched uranium and oxygen, and it is surrounded by three alternating layers of graphite and a ceramic called silicon carbide. Each particle is smaller than a poppy seed, but its layered shell can protect the uranium inside from melting under even the most extreme conditions that could occur in a reactor.

Report: Some Los Alamos nuclear waste too hazardous to move

Los Alamos National Laboratory has identified 45 barrels of radioactive waste so potentially explosive — due to being mixed with incompatible chemicals — that crews have been told not to move them and instead block off the area around the containers, according to a government watchdog’s report.


The safety board estimated an exploding waste canister could expose workers to 760 rem, far beyond the threshold of a lethal dose. A rem is a unit used to measure radiation exposure. In i ts latest weekly report, the safety board said crews at Newport News Nuclear BWXT Los Alamos, also known as N3B — the contractor in charge of cleaning up the lab’s legacy waste — have pegged 60 barrels with volatile mixtures and have relocated 15 drums to the domed area.

Forty-five barrels are deemed too dangerous to move, raising questions of what ultimately can be done with them and how hazardous it would be to keep them in their current spot.

“The current restrictions are that the containers shall not be moved,” the report said. “There is a marked buffer zone established around each container of potential concern, and intrusive operations are prohibited within the buffer zone.”

World’s first magnetised fusion power station to be built in UK

“We have really enjoyed working with General Fusion and their team of scientists on the design of the Fusion Demonstration Plant, and are particularly excited that the first of its kind will be built in the UK,” the studio told Dezeen.


A prototype power plant with a nuclear fusion reactor is set to be built in Oxfordshire, England, by Amanda Levete’s firm AL_A for the Canadian energy company General Fusion.

Located on the UK Atomic Energy Authority’s (UKAEA) campus in Culham, the Fusion Demonstration Plant will be used to prove the viability of General Fusion’s nuclear fusion technology as a carbon-free energy source.

A_LA said it will be the world’s first nuclear power plant of its kind upon completion in 2025.

China nuclear reactor shutdown may be ‘a sign of caution over new design’

“I suspect the French side is wondering whether the fuel rod damage is caused by something that they can directly address by modifying the equipment design, the water chemistry around the fuel, the plant operating procedures, or maybe even the fuel fabrication process to ensure that this doesn’t happen in other plants that are based on the Taishan design,” Fishman said.


Developer could be trying to find source of fuel rod damage to alter design in the future, analyst says.

‘Advanced’ Nuclear Reactors? Don’t Hold Your Breath

According to the UCS report, however, sodium-cooled fast reactors such as Natrium would likely be less uranium-efficient and would not reduce the amount of waste that requires long-term isolation. They also could experience safety problems that are not an issue for light-water reactors. Sodium coolant, for example, can burn when exposed to air or water, and the Natrium’s design could experience uncontrollable power increases that result in rapid core melting.


Unlike light-water reactors, these non-light-water designs rely on materials other than water for cooling. Some developers contend that these reactors, still in the concept stage, will solve the problems that have plagued light-water reactors and be ready for prime time by the end of this decade.

The siren song of a cheap, safe and secure nuclear reactor on the horizon has attracted the attention of Biden administration officials and some key members of Congress, who are looking for any and all ways to curb carbon emissions. But will so-called advanced reactors provide a powerful tool to combat climate change? A Union of Concerned Scientists (UCS) analysis of non-light-water reactor concepts in development suggests that outcome may be as likely as Energy Commission Chairman Lewis Strauss’ famous 1954 prediction that electricity generated by nuclear energy would ultimately become “too cheap to meter.” Written by UCS physicist Edwin Lyman, the 140-page report found that these designs are no better—and in some respects significantly worse—than the light-water reactors in operation today.

Lyman took a close look at the claims developers have been making about the three main non-light-water designs: sodium-cooled fast reactors, high-temperature gas-cooled reactors and molten salt–fueled reactors. With little hard evidence, many developers maintain they will be cheaper, safer and more secure than currently operating reactors; will burn uranium fuel more efficiently, produce less radioactive waste, and reduce the risk of nuclear proliferation; and could be commercialized relatively soon. Those claims, however, do not hold up to scrutiny.

Russia’s Nica: Big Bang Questions | RT Documentary

RT Documentary’s new film Russia’s NICA: Big Bang questions takes you to the Russian nuclear facility in Dubna where a collider is being built as part of the NICA mega-science project. It can recreate the beginning of the world 14 billion years ago.

This research can be used to learn how the universe was formed, according to the Big Bang theory, and the data obtained in the process will be essential to many other areas of science.
The Joint Institute for Nuclear Research in Dubna has been operating since Soviet times, and this is where the Synchrophasotron elementary particle accelerator was built in the 1960s. It is still functional and can be used, but it takes an excessive amount of energy. Nevertheless, it remains a monument to Soviet science and the attempts to learn about the universe.

The modern state-of-the-art collider called Nuclotron accelerates the charged particles. They fly towards each other and eventually meet. They collide at a rate of 7000 per second. This seems a lot, but drawing profound conclusions or making a discovery as big as the Higgs Boson takes months and even years of gathering statistics. The Boson was predicted by Nobel Prize-winning physicist Peter Higgs in 1964 and practically proved in 2012. The discovery was made on the CERN collider in Switzerland.

Besides, it is tough to observe the particles since their small size makes them indiscernible not just for the human eye but also for many devices. In this microcosm, a tiny grain of sand is equivalent to planet Earth! But once it’s done, the scientists are hoping to recreate matter formed following the Big Bang.

But the collider is not only about the past. Learning more about magnetic fields can be used in modern science and everyday life. What spectacular results the collider research yields — find out in the film!

TIMESTAMPS

The US Army tried portable nuclear power at remote bases 60 years ago – it didn’t go well

Part of a portable nuclear power plant arrives at Camp Century in 1960. Bettmann Archive/Getty ImagesIn a tunnel 40 feet beneath the surface of the Greenland ice sheet, a Geiger counter screamed. It was 1964, the height of the Cold War. U.S. soldiers in the tunnel, 800 miles from the North Pole, were dismantling the Army’s first portable nuclear reactor. Commanding Officer Joseph Franklin grabbed the radiation detector, ordered his men out and did a quick survey before retreating from the reactor.

Armed guards protect tons of nuclear waste that Maine can’t get rid of

The canisters can’t stay on the 11-acre storage site on Bailey Peninsula in Wiscasset forever. And the specter of climate change and ocean level rise adds urgency to the hunt for a solution.


That’s a problem because the waste — 1400 spent nuclear fuel rods housed in 60 cement and steel canisters, plus four canisters of irradiated steel removed from the nuclear reactor when it was taken down — is safe for now, but can’t stay in Wiscasset forever.

The situation in Wiscasset underscores a thorny issue facing more than 100 communities across the U.S.: close to a hundred thousand tons of nuclear waste that has no place to go.

Securing these remnants of nuclear energy generation is an ongoing task that requires armed guards around the clock and costs Maine Yankee’s owners some $10 million per year, which is being paid for with money from the government.

/* */