Toggle light / dark theme

Ultrasound helmet enables deep brain stimulation in people without surgery

An ultrasound device that can precisely stimulate areas deep in the brain without surgery has been developed by researchers from UCL and the University of Oxford, opening up new possibilities for neurological research and treatment of disorders such as Parkinson’s disease.

A paper describing this work appears in Nature Communications.

Scientists have long been looking for a way to modulate brain function, which could improve our understanding of how the brain works and help to treat , using non-invasive methods that don’t involve surgery. One technology that could help is transcranial ultrasound stimulation (TUS), which was recently discovered to be able to modulate the activity of neurons (the brain’s key communication cells) by delivering gentle mechanical pulses that influence how these cells send signals.

Researchers uncover critical genetic drivers of the gut’s ‘nervous system’ development

Vanderbilt researchers, including those from the Vanderbilt Brain Institute, have made significant strides in understanding how the enteric nervous system—sometimes called the “brain” of the gut—forms and functions.

In a study published in Cellular and Molecular Gastroenterology and Hepatology, the lab of principal investigator, Michelle Southard-Smith, sheds light on how the SOX10 protein contributes to the development of gut cells that play a role in gastrointestinal motility, or how food moves through the digestive system.

The paper is titled “Single Cell Profiling in the Sox10Dom Hirschsprung Mouse Implicates Hox genes in Enteric Neuron Trajectory Allocation.”

Human brains explore more to avoid losses than to seek gains

Researchers at the Weizmann Institute of Science traced a neural mechanism that explains why humans explore more aggressively when avoiding losses than when pursuing gains. Their work reveals how neuronal firing and noise in the amygdala shape exploratory decision-making.

Human survival has its origins in a delicate balance of versus exploitation. There is safety in exploiting what is known, the local hunting grounds, the favorite foraging location, the go-to deli with the familiar menu. Exploitation also involves the risk of over-reliance on the familiar to the point of becoming too dependent upon it, either through depletion or a change in the stability of local resources.

Exploring the world in the hope of discovering better options has its own set of risks and rewards. There is the chance of finding plentiful hunting grounds, alternative foraging resources, or a new deli that offers a fresh take on old favorites. And there is the risk that new hunting grounds will be scarce, the newly foraged berries poisonous, or that the meal time will be ruined by a deli that disappoints.

Treatment For Psychosis May Be ‘Fundamentally Flawed’, Study Finds

For decades, psychiatrists have treated psychosis as if it were separate conditions. People experiencing hallucinations and delusions might be diagnosed with schizophrenia, bipolar disorder, severe depression and related diagnoses, and receive completely different treatments based on diagnosis.

But new research suggests this approach may be fundamentally flawed.

Our latest study, published in JAMA Psychiatry, reveals that the brain changes driving psychotic symptoms are remarkably similar across these supposedly distinct mental health conditions. The findings could change how doctors choose treatments for the millions of people worldwide who experience psychosis.

/* */