Toggle light / dark theme

Study identifies 13 proteins strongly associated with brain aging

Thirteen proteins linked to brain aging in humans are identified in a Nature Aging paper. Changes in the concentrations of these blood proteins may peak at 57, 70, and 78 years old in humans, and suggest that these ages may be important for potential interventions in the brain aging process.

It is estimated that by 2050 the number of individuals aged 65 years and over will exceed 1.5 billion globally, highlighting the need for a deeper understanding of the aging process—particularly in relation to the .

The prevalence of neurodegenerative disorders, such as dementia, is known to increase with aging; however, effective therapies are still limited. The early identification of and intervention in could help us to prevent such disorders.

How Evolution Shaped the Brain’s Understanding of Numbers

Summary: Human number cognition may be rooted in the putamen, a deep brain structure traditionally associated with movement rather than abstract thought. Neurosurgery patients demonstrated activity in this area while processing numbers as symbols, words, and concepts, suggesting that numerical understanding emerged early in evolution.

Researchers also observed activity in expected areas like the parietal lobe, highlighting how different brain regions collaborate in number processing. These findings could improve surgical outcomes by protecting areas crucial for number cognition and open pathways to enhancing math learning through targeted interventions.

Short Sleep and High Blood Pressure Linked to Brain Aging

Summary: Research reveals that people with high blood pressure who also sleep less than six hours per night face increased risks of brain injury, accelerated brain aging, and impaired executive function. The study assessed 682 participants from the Framingham Heart Study, analyzing sleep patterns, blood pressure, cognitive performance, and brain MRIs.

These risks were not present in individuals with normal blood pressure, highlighting a concerning interaction between sleep deprivation and hypertension. Researchers suggest treating sleep problems and hypertension as potential interventions to protect brain health and delay cognitive decline.

How Stress Changes our Memories: Engrams and the Endocannabinoid system may inform new PTSD treatments

Researchers at The Hospital for Sick Children (SickKids) have uncovered that stress changes how our brain encodes and retrieves aversive memories, and discovered a promising new way to restore appropriate memory specificity in people with post-traumatic stress disorder (PTSD).

If you stumble during a presentation, you might feel stressed the next time you have to present because your brain associates your next presentation with that one poor and aversive experience. This type of stress is tied to one memory.

But stress from traumatic events like violence or generalized anxiety disorder can spread far beyond the original event, known as stress-induced aversive memory generalization, where fireworks or car backfires can trigger seemingly unrelated fearful memories and derail your entire day. In the case of PTSD, it can cause much greater negative consequences.

A Novel 14mer Peptide Inhibits Autophagic Flux via Selective Activation of the mTORC1 Signalling Pathway: Implications for Alzheimer’s Disease

💡 LastestPaper.

📚 🔗 https://brnw.ch/21wPhFj.

🧑🏻‍🔬 By Ms. Cloe García Porta, Dr. Kashif Mahfooz, Mr. Joanna Komorowska, Dr. Sara Garcia-Rates and Dr. Susan Greenfield.


During development, a 14mer peptide, T14, modulates cell growth via the α-7 nicotinic acetylcholine receptor (α7 nAChR). However, this process could become excitotoxic in the context of the adult brain, leading to pathologies such as Alzheimer’s disease (AD). Recent work shows that T14 acts selectively via the mammalian target of rapamycin complex 1 (mTORC1). This pathway is essential for normal development but is overactive in AD. The triggering of mTORC1 has also been associated with the suppression of autophagy, commonly observed in ageing and neurodegeneration. We therefore investigated the relationship between T14 and autophagic flux in tissue cultures, mouse brain slices, and human Alzheimer’s disease hippocampus.

Brain mapping technique reveals insights into brain’s higher functions

A new way of mapping activity and connections between different regions of the brain has revealed fresh insights into how higher order functions like language, thought and attention, are organized.

Traditional models of activity represent interactions in pairs between two different brain regions. This is because modeling methods have not developed sufficiently to describe more between multiple regions.

A new approach, developed by researchers at the University of Birmingham is capable of taking signals measured through neuroimaging, and creating accurate models from these to show how different are contributing to specific functions and behaviors. The results are published in Nature Communications.

Network-based analyses uncover how neuroinflammation-causing microglia in Alzheimer’s disease form

Cleveland Clinic Genome Center researchers have unraveled how immune cells called microglia can transform and drive harmful processes like neuroinflammation in Alzheimer’s disease. The study, published in the journal Alzheimer’s & Dementia, also integrates drug databases with real-world patient data to identify FDA-approved drugs that may be repurposed to target disease-associated microglia in Alzheimer’s disease without affecting the healthy type.

The researchers, led by study corresponding author Feixiong Cheng, Ph.D., hope their unique approach of integrating genetic, chemical and human health data to identify and corresponding drugs will inspire other scientists to take similar approaches in their own research.

Microglia are specialized that patrol our brains, seeking and responding to tissue damage and external threats like bacteria and viruses. Different types of microglial cells use different methods to keep the brain safe. Some may cause neuroinflammation—inflammation in the brain—to fight invaders or kickstart the repair process in damaged cells. Others may work to “eat” dangerous substances in the brain, and clean up damage and debris. However, during Alzheimer’s disease, new types of microglia can form that promote .

/* */