Menu

Blog

Archive for the ‘neuroscience’ category: Page 188

Dec 2, 2023

Neuronal factors determining high intelligence

Posted by in category: neuroscience

Many attempts have been made to correlate degrees of both animal and human intelligence with brain properties. With respect to mammals, a much-discussed trait concerns absolute and relative brain size, either uncorrected or corrected for body size. However, the correlation of both with degrees of intelligence yields large inconsistencies, because although they are regarded as the most intelligent mammals, monkeys and apes, including humans, have neither the absolutely nor the relatively largest brains. The best fit between brain traits and degrees of intelligence among mammals is reached by a combination of the number of cortical neurons, neuron packing density, interneuronal distance and axonal conduction velocity—factors that determine general information processing capacity (IPC), as reflected by general intelligence.

Dec 1, 2023

Autism: A view from neuroscience — A CCN public lecture

Posted by in category: neuroscience

Given by Dr. Caroline Robertson of the Dartmouth Autism Research Initiative, in the Department of Psychological and Brain Sciences.

Sponsored by: Center for Cognitive Neuroscience at Dartmouth.
Recorded October 18, 2018

Dec 1, 2023

Altered Neural Connectivity in Autism Spectrum Disorder and Related Neuropsychiatric Conditions

Posted by in category: neuroscience

Dec 1, 2023

Decoding motor plans using a closed-loop ultrasonic brain–machine interface

Posted by in categories: information science, mapping, neuroscience

BMIs using intracortical electrodes, such as Utah arrays, are particularly adept at sensing fast changing (millisecond-scale) neural activity from spatially localized regions (1 cm) during behavior or stimulation that is correlated to activity in such spatially specific regions, for example, M1 for motor and V1 for vision. Intracortical electrodes, however, struggle to track individual neurons over longer periods of time, for example, between subsequent recording sessions15,16. Consequently, decoders are typically retrained every day15. A similar neural population identification problem is also present with an ultrasound device, including from shifts in the field of view between experiment sessions. In the current study, we demonstrated an alignment method that stabilizes image-based BMIs across more than a month and decodes from the same neurovascular populations with minimal, if any, retraining. This is a critical development that enables easy alignment of a previous days’ models to a new day’s data and allows decoding to begin with minimal to no new training data. Much effort has focused on ways to recalibrate intracortical BMIs across days that do not require extensive new data18,19,20,21,22,23. Most of these methods require identification of manifolds and/or latent dynamical parameters and collecting new neural and behavioral data to align to these manifolds/parameters. These techniques are, to date, tailored to each research group’s specific applications with varying requirements, such as hyperparameter tuning of the model23 or a consistent temporal structure of data22. They are also susceptible to changes in function in addition to anatomy. For example, ‘out-of-manifold’ learning/plasticity alters the manifold24 in ways that many alignment techniques struggle to address. Finally, some of the algorithms are computationally expensive and/or difficult to implement in online use22.

Contrasting these manifold-based methods, our decoder alignment algorithm leverages the intrinsic spatial resolution and field of view provided by fUS neuroimaging to perform decoder stabilization in a way that is intuitive, repeatable and performant. We used a single fUS frame (∼ 500 ms) to generate an image of the current session’s anatomy and aligned a previous session’s field of view to this single image. Notably, this did not require any additional behavior for the alignment. Because we only relied upon the anatomy, our decoder alignment is robust, can use any off-the-shelf alignment tool and is a valid technique so long as the anatomy and mesoscopic encoding of relevant variables do not change drastically between sessions.

It remains an open question as to how much the precise positioning of the ultrasound transducer during each session matters for decoder performance, especially out-of-plane shifts or rotations. In these current experiments, we used linear decoders that assumed a given image pixel is the same brain voxel across all aligned data sessions. To minimize disruptions to this pixel–voxel relationship, we performed image alignment within the 2D plane. As we could only image a 2D recording plane, we did not correct for any out-of-plane brain shifts between sessions that would have disrupted the pixel–voxel mapping assumption. Future fUS-BMI decoders may benefit from three-dimensional (3D) models of the neurovasculature, such as registering the 2D field of view to a 3D volume25,26,27 to better maintain a consistent pixel–voxel mapping.

Dec 1, 2023

When Fiction Feels Real: Scientists Discover That Lonely Brains Can’t Differentiate Between Fictional Characters and Real-Life Friends

Posted by in category: neuroscience

A recent study discovered that for individuals who often feel lonely, the distinction between actual friends and beloved fictional characters gets blurred in the part of the brain that is active when thinking about others, a new study found.

The study involved brain scans of “Game of Thrones” enthusiasts as they reflected on different characters from the series and their real-life friends. Prior to the study, all participants had undergone a loneliness assessment.

The difference between those who scored highest on loneliness and those who scored lowest was stark, said Dylan Wagner, co-author of the study and associate professor of psychology at The Ohio State University.

Nov 30, 2023

The X Prize is taking aim at aging with a new $101 million award

Posted by in categories: life extension, neuroscience, Peter Diamandis

Any team that can restore at least a decade’s worth of muscle, brain, and immune function in older adults will claim the top prize.

Money can’t buy happiness, but X Prize founder Peter Diamandis hopes it might be able to buy better health.

Nov 30, 2023

Could theropod dinosaurs have evolved to a human level of intelligence?

Posted by in categories: evolution, neuroscience

Noting that some theropod dinosaurs had large brains, large grasping hands, and likely binocular vision, paleontologist Dale Russell suggested that a branch of these dinosaurs might have evolved to a human intelligence level, had dinosaurs not become extinct. I offer reasons why the likely pallial organization in dinosaurs would have made this improbable, based on four assumptions. First, it is assumed that achieving human intelligence requires evolving an equivalent of the about 200 functionally specialized cortical areas characteristic of humans. Second, it is assumed that dinosaurs had an avian nuclear type of pallial organization, in contrast to the mammalian cortical organization. Third, it is assumed that the interactions between the different neuron types making up an information processing unit within pallium are critical to its role in analyzing information. Finally, it is assumed that increasing axonal length between the neuron sets carrying out this operation impairs its efficacy. Based on these assumptions, I present two main reasons why dinosaur pallium might have been unable to add the equivalent of 200 efficiently functioning cortical areas. First, a nuclear pattern of pallial organization would require increasing distances between the neuron groups corresponding to the separate layers of any given mammalian cortical area, as more sets of nuclei equivalent to a cortical area are interposed between the existing sets, increasing axon length and thereby impairing processing efficiency. Second, because of its nuclear organization, dinosaur pallium could not reduce axon length by folding to bring adjacent areas closer together, as occurs in cerebral cortex.

Keywords: avian brain; axonal length; connectivity; dinosaur evolution; humans; intelligence; troodon.

© 2023 The Authors. The Journal of Comparative Neurology published by Wiley Periodicals LLC.

Nov 30, 2023

AI-Enhanced Imaging: Probing Brain’s Visual Processing

Posted by in categories: biotech/medical, neuroscience, robotics/AI

Summary: Researchers used AI to select and generate images for studying brain’s visual processing. Functional MRI (fMRI) recorded heightened brain activity in response to these images, surpassing control images.

The approach enabled tuning visual models to individual responses, enhancing the study of brain’s reaction to visual stimuli. This method, offering an unbiased, systematic view of visual processing, could revolutionize neuroscience and therapeutic approaches.

Nov 30, 2023

Decoding the Neuroscience of Consciousness (The Social Brain ep 30)

Posted by in category: neuroscience

Consciousness is probably the most perplexing mystery in all of science, and right now there is no consensus among neuroscientists about how the brain produc…

Nov 30, 2023

Dementia: Hearing loss causes structural changes in the brain

Posted by in category: neuroscience

A recent study indicates that hearing loss could contribute to dementia by impacting regions of the brain associated with attention and executive function.

Page 188 of 1,014First185186187188189190191192Last