Menu

Blog

Archive for the ‘neuroscience’ category: Page 123

Mar 22, 2024

Genetic Modification of Brain Organoids

Posted by in categories: biotech/medical, evolution, genetics, neuroscience

Brain organoids have become increasingly used systems allowing 3D-modeling of human brain development, evolution, and disease. To be able to make full use of these modeling systems, researchers have developed a growing toolkit of genetic modification techniques. These techniques can be applied to mature brain organoids or to the preceding embryoid bodies (EBs) and founding cells. This review will describe techniques used for transient and stable genetic modification of brain organoids and discuss their current use and respective advantages and disadvantages. Transient approaches include adeno-associated virus (AAV) and electroporation-based techniques, whereas stable genetic modification approaches make use of lentivirus (including viral stamping), transposon and CRISPR/Cas9 systems. Finally, an outlook as to likely future developments and applications regarding genetic modifications of brain organoids will be presented.

The development of brain organoids (Kadoshima et al., 2013; Lancaster et al., 2013) has opened up new ways to study brain development and evolution as well as neurodevelopmental disorders. Brain organoids are multicellular 3D structures that mimic certain aspects of the cytoarchitecture and cell-type composition of certain brain regions over a particular developmental time window (Heide et al., 2018). These structures are generated by differentiation of induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs) into embryoid bodies followed by, or combined, with neural induction (Kadoshima et al., 2013; Lancaster et al., 2013). In principle, two different classes of brain organoid protocols can be distinguished, namely: (i) the self-patterning protocols which produce whole-brain organoids; and (ii) the pre-patterning protocols which produce brain region-specific organoids (Heide et al., 2018).

Mar 22, 2024

Musk’s Neuralink says the first human to have a chip implanted in his brain can now play video games using his mind

Posted by in categories: biotech/medical, computing, Elon Musk, neuroscience

The first patient of Elon Musk’s Neuralink has been presented to the public. Noland Arbaugh had all but given up playing Civilization VI ever since a diving accident dislocated two vertebrae in his cervical spinal cord, leaving him paralyzed from the shoulders down.

When confined to his wheel chair, the 29-year-old American is totally dependent on the care of his parents, who need to shift his weight ever few hours to avoid pressure sores from sitting too long in the same position.

Moving a cursor on a display furthermore required the use of a mouth stick, a specialized assistive device used by quadriplegics.

Mar 22, 2024

Why Does The World Not Care About Men’s Mental Health?

Posted by in category: neuroscience

George TheTinMen is a content creator, pro-men’s advocate and social media influencer. Men’s mental health is in the toilet. 80% of 18–24 year old suicides are men. 15% of men say they have 0 close friends to call on in an emergency. So why does it seem like the world doesn’t care and just thinks that men are still the benefactors of a patriarchy they no longer feel a part of?

Mar 22, 2024

Harvard/MIT Study: Schizophrenia and Aging May Share a Common Biological Foundation

Posted by in categories: biotech/medical, life extension, neuroscience

Researchers from the Broad Institute of MIT and Harvard, along with colleagues from Harvard Medical School and McLean Hospital, have identified remarkably consistent alterations in gene expression within the brains of individuals with schizophrenia and older adults. This discovery points to a shared biological foundation underlying the cognitive difficulties frequently observed in patients with schizophrenia and in aging populations.

In a study published in Nature, the team describes how they analyzed gene expression in more than a million individual cells from postmortem brain tissue from 191 people. They found that in individuals with schizophrenia and in older adults without schizophrenia, two brain cell types called astrocytes and neurons reduced their expression of genes that support the junctions between neurons called synapses, compared to healthy or younger people. They also discovered tightly synchronized gene expression changes in the two cell types: when neurons decreased the expression of certain genes related to synapses, astrocytes similarly changed expression of a distinct set of genes that support synapses.

The team called this coordinated set of changes the Synaptic Neuron and Astrocyte Program (SNAP). Even in healthy, young people, the expression of the SNAP genes always increased or decreased in a coordinated way in their neurons and astrocytes.

Mar 22, 2024

Unlocking the Mystery of Cognitive Decline Before Dementia

Posted by in categories: biotech/medical, neuroscience

Study finds language-processing difficulties are an indicator — more so than memory loss — of amnestic mild cognitive impairment.

Individuals with mild cognitive impairment, especially of the “amnestic subtype” (aMCI), are at increased risk for dementia due to Alzheimer’s disease relative to cognitively healthy older adults. Now, a study co-authored by researchers from MIT, Cornell University, and Massachusetts General Hospital has identified a key deficit in people with aMCI, which relates to producing complex language.

This deficit is independent of the memory deficit that characterizes this group and may provide an additional “cognitive biomarker” to aid in early detection — the time when treatments, as they continue to be developed, are likely to be most effective.

Mar 21, 2024

Single Motor Neurons Analyzed in 3D in a Moving Fly Body

Posted by in category: neuroscience

A new study presents findings from the characterization of the individual roles of the motor neurons that control head movement in Drosophila melanogaster.


Despite the pivotal role of motor neurons in movement, how a single motor neuron contributes to control during movement remains unclear. Measuring the activity of individual neurons in moving animals has proven to be experimentally difficult.

However, advances have made it possible for researchers to manipulate single motor neurons in fruit flies as the insects move freely. A new study presents the findings from the characterization of the individual roles of the motor neurons that control head movement in Drosophila melanogaster.

Continue reading “Single Motor Neurons Analyzed in 3D in a Moving Fly Body” »

Mar 21, 2024

Why are octopuses so intelligent?

Posted by in categories: futurism, neuroscience

We can test the cognitive abilities of octopuses in the lab. In our EthoS laboratory, we are currently working on the memory and future planning abilities of the common octopus. They are complex animals to study, because of their astonishing abilities.

Their incredible strength allows them to easily destroy our lab tools: be careful with underwater cameras, they can open the waterproof box to drown them! And because octopuses are boneless, they can easily escape their tanks through the smallest of openings. They are also extremely curious and will spend their time catching hands, nets or any other object introduced to their tank. From there, it is up to them to decide when to release their catch.

Continue reading “Why are octopuses so intelligent?” »

Mar 21, 2024

The new science of optimism and longevity

Posted by in categories: biotech/medical, genetics, life extension, neuroscience, science

Results of DNA studies also seem to confirm the idea that optimism is an effective tool for slowing down cellular aging, of which telomere shortening is a biomarker. (Telomeres are the protective caps at the end of our chromosomes.) This research is still in progress, but the early results are informative. In 2012, Elizabeth Blackburn, who three years earlier shared a Nobel Prize for her work in discovering the enzyme that replenishes the telomere, and Elissa Epel at the University of California at San Francisco, in collaboration with other institutions, identified a correlation between pessimism and accelerated telomere shortening in a group of postmenopausal women. A pessimistic attitude, they found, may indeed be associated with shorter telomeres. Studies are moving toward larger sample sizes, but it already seems apparent that optimism and pessimism play a significant role in our health as well as in the rate of cellular senescence. More recently, in 2021, Harvard University scientists, in collaboration with Boston University and the Ospedale Maggiore in Milan, Italy, observed the telomeres of 490 elderly men in the Normative Health Study on U.S. veterans. Subjects with strongly pessimistic attitudes were associated with shorter telomeres — a further encouraging finding in the study of those mechanisms that make optimism and pessimism biologically relevant.

Optimism is thought to be genetically determined for only 25 percent of the population. For the rest, it’s the result of our social relationships or deliberate efforts to learn more positive thinking. In an interview with Jane Brody for the New York Times, Rozanski explained that “our way of thinking is habitual, unaware, so the first step is to learn to control ourselves when negative thoughts assail us and commit ourselves to change the way we look at things. We must recognize that our way of thinking is not necessarily the only way of looking at a situation. This thought alone can lower the toxic effect of negativity.” For Rozanski, optimism, like a muscle, can be trained to become stronger through positivity and gratitude, in order to replace an irrational negative thought with a positive and more reasonable one.

While the exact mechanisms remain under investigation, a growing body of research suggests that optimism plays a significant role in promoting both physical and mental well-being. Cultivating a positive outlook, then, can be a powerful tool for fostering resilience, managing stress, and potentially even enhancing longevity. By adopting practices that nurture optimism, we can empower ourselves to navigate life’s challenges with greater strength and live healthier, happier lives.

Mar 21, 2024

X-Ray activated nanoparticles halt Alzheimer’s in study

Posted by in categories: biotech/medical, health, nanotechnology, neuroscience

A novel approach in the field of Alzheimer’s research is emerging that could potentially transform how we tackle this debilitating disease. Recent studies have revealed a paradigm shift in understanding Alzheimer’s pathology, emphasizing the importance of targeting the early-stage aggregation of the pathogenic amyloid beta (A-beta) protein, specifically focusing on its soluble oligomeric form.

Over the past three decades, conventional treatments for Alzheimer’s have largely been ineffective, primarily due to their focus on combating the fibrillar form of A-beta. However, emerging research suggests that it is the soluble oligomeric form of A-beta that poses the greatest threat to neuronal health, leading to cognitive decline and neurotoxicity.

A recent breakthrough in Alzheimer’s treatment has come from the development of an antibody capable of recognizing both oligomeric and fibrillar forms of A-beta, offering newfound hope to the field. This innovative therapy has demonstrated promising results in delaying disease progression by up to 36% in individuals with early-to-mild cognitive impairment.

Mar 21, 2024

Alzheimer’s: Cause may be linked to build-up of fat in brain cells

Posted by in categories: biotech/medical, neuroscience

Researchers report that lipid droplets in brain cells may be a more significant factor in the development of Alzheimer’s disease than previously thought.

Page 123 of 1,013First120121122123124125126127Last