Menu

Blog

Archive for the ‘nanotechnology’ category: Page 134

Jul 7, 2020

Researchers Create Shiny Rainbows of Nanotech Chocolate

Posted by in categories: biotech/medical, food, nanotechnology

While so many of us are working at home during the coronavirus pandemic, we do worry that serendipitous hallway conversations aren’t happening.

Last year, before the pandemic, it was one of those conversations that led researchers at ETH Zurich to develop a way of making chocolates shimmer with color—without any coloring agents or other additives.

The project, announced in December, involves what the scientists call “structural color”. The team indicated that it creates colors in a way similar to what a chameleon does—that is, using the structure of its skin to scatter a particular wavelength of light. The researchers have yet to release details, but Alissa M. Fitzgerald, founder of MEMS product development firm AMFitzgerald, has a pretty good guess.

Jul 6, 2020

New nano-engineering strategy shows potential for improved advanced energy storage

Posted by in categories: energy, engineering, nanotechnology, sustainability

The rapid development of renewable energy resources has triggered tremendous demands in large-scale, cost-efficient and high-energy-density stationary energy storage systems.

Lithium ion batteries (LIBs) have many advantages but there are much more abundant metallic elements available such as sodium, potassium, zinc and aluminum.

These elements have similar chemistries to lithium and have recently been extensively investigated, including (SIBs), potassium-ion batteries (PIBs), zinc-ion batteries (ZIBs), and aluminum-ion batteries (AIBs). Despite promising aspects relating to redox potential and density the development of these beyond-LIBs has been impeded by the lack of suitable electrode materials.

Jul 5, 2020

Pentadiamond: Scientists Devise a Way to Build a Harder Diamond

Posted by in categories: computing, nanotechnology, particle physics

Scientists at the University of Tsukuba use computer calculations to propose a new way to rearrange the carbon atoms in a diamond to make it even harder, which may be useful in industrial applications that rely on synthetic cutting diamonds.

Researchers at the University of Tsukuba used computer calculations to design a new carbon-based material even harder than diamond. This structure, dubbed “pentadiamond” by its creators, may be useful for replacing current synthetic diamonds in difficult cutting manufacturing tasks.

Diamonds, which are made entirely of carbon atoms arranged in a dense lattice, are famous for their unmatched hardness among known materials. However, carbon can form many other stable configurations, called allotropes. These include the familiar graphite in pencil lead, as well as nanomaterials such as carbon nanotubes. The mechanical properties, including hardness, of an allotrope depend mostly on the way its atoms bond with each other. In conventional diamonds, each carbon atom forms a covalent bond with four neighbors. Chemists call carbon atoms like this as having sp3 hybridization. In nanotubes and some other materials, each carbon forms three bonds, called sp2 hybridization.

Jul 2, 2020

Photonic paper: Multiscale assembly of reflective cellulose sheets in Lunaria annua

Posted by in category: nanotechnology

Bright, iridescent colors observed in nature are often caused by light interference within nanoscale periodic lattices, inspiring numerous strategies for coloration devoid of inorganic pigments. Here, we describe and characterize the septum of the Lunaria annua plant that generates large (multicentimeter), freestanding iridescent sheets, with distinctive silvery-white reflective appearance. This originates from the thin-film assembly of cellulose fibers in the cells of the septum that induce thin-film interference–like colors at the microscale, thus accounting for the structure’s overall silvery-white reflectance at the macroscale. These cells further assemble into two thin layers, resulting in a mechanically robust, iridescent septum, which is also significantly light due to its high air porosity (70%) arising from the cells’ hollow-core structure. This combination of hierarchical structure comprising mechanical and optical function can inspire technological classes of devices and interfaces based on robust, light, and spectrally responsive natural substrates.

Structural color has captured the fascination of optical researchers through numerous observations throughout history, both in naturally occurring structures and in the animal world (1–3). Plants have also evolved structural colors to fulfill a variety of functions (4–7): Structurally colored leaves (8–10), flowers (11, 12), and fruits (4, 5, 13, 14) are used by plants to regulate light harvesting (8, 15–17) and attract pollinators (6, 7), while they are also believed to promote seed dispersal (4, 5). The few, so far, described plants whose fruits are structurally colored are understory species living in tropical regions, whose fruits reflect light spanning from deep metallic blue to green when ripe.

Jul 2, 2020

Researchers observe branched flow of light for the first time

Posted by in categories: engineering, nanotechnology, physics

A team of researchers from the Technion – Israel Institute of Technology has observed branched flow of light for the very first time. The findings are published in Nature and are featured on the cover of the July 2, 2020 issue.

The study was carried out by Ph.D. student Anatoly (Tolik) Patsyk, in collaboration with Miguel A. Bandres, who was a postdoctoral fellow at Technion when the project started and is now an Assistant Professor at CREOL, College of Optics and Photonics, University of Central Florida. The research was led by Technion President Professor Uri Sivan and Distinguished Professor Mordechai (Moti) Segev of the Technion’s Physics and Electrical Engineering Faculties, the Solid State Institute, and the Russell Berrie Nanotechnology Institute.

Continue reading “Researchers observe branched flow of light for the first time” »

Jun 29, 2020

Nanotechnology applied to medicine: The first liquid retina prosthesis

Posted by in categories: biotech/medical, cyborgs, evolution, life extension, nanotechnology

Research at IIT-Istituto Italiano di Tecnologia (Italian Institute of Technology) has led to the revolutionary development of an artificial liquid retinal prosthesis to counteract the effects of diseases such as retinitis pigmentosa and age-related macular degeneration that cause the progressive degeneration of photoreceptors of the retina, resulting in blindness. The study has been published in Nature Nanotechnology.

The study represents the state of the art in retinal prosthetics and is an evolution of the planar artificial retinal model developed by the same team in 2017 and based on organic semiconductor materials (Nature Materials 2017, 16: 681–689).

The ‘second generation’ artificial retina is biomimetic, offers and consists of an aqueous component in which photoactive polymeric nanoparticles (whose size is 350 nanometres, thus about 1/100 of the diameter of a hair) are suspended, and will replace damaged photoreceptors.

Jun 29, 2020

Team develops method for trapping elusive electrons

Posted by in categories: computing, nanotechnology, quantum physics

Graphene’s unique 2-D structure means that electrons travel through it differently than in most other materials. One consequence of this unique transport is that applying a voltage doesn’t stop the electrons like it does in most other materials. This is a problem, because to make useful applications out of graphene and its unique electrons, such as quantum computers, it is necessary to be able to stop and control graphene electrons.

An interdisciplinary team of scientists from the Universidad Autonoma de Madrid (Spain), Université Grenoble Alpes (France), International Iberian Nanotechnology Laboratory (Portugal) and Aalto University has solved this long-standing problem. The team included experimental researchers Eva Cortés del Río, Pierre Mallet, Héctor González‐Herrero, José María Gómez‐Rodríguez, Jean‐Yves Veuillen and Iván Brihuega and theorists including Joaquín Fernández-Rossier and Jose Lado, assistant professor in the department of Applied Physics at Aalto.

The experimental team used atomic bricks to build walls capable of stopping the electrons. This was achieved by creating atomic walls that confined the electrons, leading to structures whose spectrum was then compared with theoretical predictions, demonstrating that electrons were confined. In particular, it was obtained that the engineered structures gave rise to nearly perfect confinement of electrons, as demonstrated from the emergence of sharp quantum well resonances with a remarkably long lifetime.

Jun 28, 2020

This is Intel’s not-so-secret weapon against AMD, but will it be too late?

Posted by in category: nanotechnology

Nanowire/nanoribbon is the way to go, Intel head says.

Jun 26, 2020

Quantum computers could arrive sooner if we build them with traditional silicon technology

Posted by in categories: chemistry, nanotechnology, quantum physics, robotics/AI

Quantum computers have the potential to revolutionise the way we solve hard computing problems, from creating advanced artificial intelligence to simulating chemical reactions in order to create the next generation of materials or drugs. But actually building such machines is very difficult because they involve exotic components and have to be kept in highly controlled environments. And the ones we have so far can’t outperform traditional machines as yet.

But with a team of researchers from the UK and France, we have demonstrated that it may well be possible to build a quantum computer from conventional silicon-based electronic components. This could pave the way for large-scale manufacturing of quantum computers much sooner than might otherwise be possible.

Continue reading “Quantum computers could arrive sooner if we build them with traditional silicon technology” »

Jun 26, 2020

Dynamics of DNA replication revealed at the nanoscale

Posted by in categories: biotech/medical, genetics, nanotechnology

DNA replication is a process of critical importance to the cell, and must be coordinated precisely to ensure that genomic information is duplicated once and only once during each cell cycle. Using super-resolution technology a University of Technology Sydney led team has directly visualized the process of DNA replication in single human cells.

This is the first quantitative characterization to date of the spatio-temporal organization, morphology, and in situ epigenetic signatures of individual replication foci (RFi) in single human at the nanoscale.

The results of the study, published in PNAS (Proceedings of the National Academy of Sciences) give new insight into a poorly understood area of DNA replication namely how replication origin sites are chosen from thousands of possible sites.