Menu

Blog

Archive for the ‘mobile phones’ category: Page 234

Sep 21, 2015

Open Source ‘Solar Pocket Factory’ Can 3D Print a Solar Panel Every 15 Seconds

Posted by in categories: 3D printing, computing, electronics, mobile phones, solar power, sustainability

Shawn Frayne and Alex Hornstein, two young inventors based in the Philippines, are taking their passion for clean free energy and developing a way to make it accessible and cheap for everyone. These guys are working restlessly to provide a product that could be used by practically anyone to make homemade solar panels.

The factory is small enough to fit on a desktop and efficient enough to produce 300k to one million panels per year, up to one every 15 seconds. By cutting out much of the labor intensive process, which represents 50% of the total cost, this machine can dramatically reduce the price of solar. Their pocket solar panel producer can change the way the world views electricity. Image credit: YouTube/SciFri

Continue reading “Open Source ‘Solar Pocket Factory’ Can 3D Print a Solar Panel Every 15 Seconds” »

Sep 21, 2015

Researchers enable robots to see through solid walls with Wi-Fi (w/ Video)

Posted by in categories: internet, materials, mobile phones, robotics/AI

(Phys.org) —Wi-Fi makes all kinds of things possible. We can send and receive messages, make phone calls, browse the Internet, even play games with people who are miles away, all without the cords and wires to tie us down. At UC Santa Barbara, researchers are now using this versatile, everyday signal to do something different and powerful: looking through solid walls and seeing every square inch of what’s on the other side. Built into robots, the technology has far-reaching possibilities.

“This is an exciting time to be doing this kind of research,” said Yasamin Mostofi, professor of electrical and computer engineering at UCSB. For the past few years, she and her team have been busy realizing this X-ray vision, enabling robots to see objects and humans behind thick walls through the use of radio frequency signals. The patented allows users to see the space on the other side and identify not only the presence of occluded objects, but also their position and geometry, without any of the area. Additionally, it has the potential to classify the material type of each occluded object such as human, metal or wood.

The combination of and automated mobility can make these robots useful in situations where human access is difficult or risky, and the ability to determine what is in a given occluded area is important, such as search and rescue operations for natural or man-made disasters.

Read more

Sep 21, 2015

Kickstarter campaign bringing magnetic charging to iPhone

Posted by in categories: energy, mobile phones

If you’ve got an iPhone, there is a good chance you also have a MacBook. The MagSafe charger on Apple’s laptop offerings is easy to use, leading some to want an iPhone with the same functionality. A recently funded Kickstarter is attempting to bring it to us, and even slaps in a battery pack for good measure.

The draw for Cabin is twofold: the magnetic charging, and the battery pack. The battery pack slips onto the rear of the device, much like we see with the Case+ lineup from Logitech. Aluminum, Cabin is relying on your sensitivity to style for the battery pack. At 2200mAh, it’ll charge you up more than once, too.

The magnetic charging is a bit more adapter than anything else. By taking a lightning connector and working a pinned magnetic charger on the end, we get simple, easy, and (hopefully) effective charging. What you won’t be able to do is use your MacBook charger. Cabin includes a Lightning adapter and dock (if you spend a touch more), though.

Read more

Sep 21, 2015

Here’s why your phone and laptop batteries degrade so fast

Posted by in categories: energy, mobile phones, transportation

Researchers in the US have identified the two main culprits in rechargeable battery degradation, which could lead to longer-lasting phone, laptop and electric car batteries.

Read more

Sep 21, 2015

Sand-based batteries could soon power your mobile phone

Posted by in categories: energy, materials, mobile phones

Researchers at the University of California, Riverside in the US have developed lithium-ion batteries that substitute graphite with silicon extracted from sand and last three times longer than current products.

The negative side of lithium-ion batteries, or anode, is made with graphite, and scientists have been trying to find a substitute material that could make batteries last longer. One of the options is silicon, which can store up to 10 times more energy than current materials, but it’s expensive and hard to produce in large quantities.

But then a very simple but brilliant option revealed itself to graduate student Zachary Favors. As Gizmag reports, Favors was relaxing after surfing when he noticed something quite special: sand. Sand is made of quartz, or silicon dioxide, and other materials, so Favors thought he could extract the silicon and use it to make batteries.

Read more

Sep 20, 2015

The market of mobile phones in China.

Posted by in category: mobile phones

Read more

Sep 20, 2015

A new type of transistor that can be switched with magnetism rather than electricity could massively cut power consumption of computers

Posted by in categories: computing, mobile phones

, cell phones and other electronic devices and allow chips to be reprogrammed, reducing the volume of circuitry required inside them.

http://www.nature.com/news/magnetic-logic-makes-for-mutable-chips-1.12321

Read more

Sep 17, 2015

A fast cell sorter shrinks to cell phone size

Posted by in categories: biotech/medical, mobile phones, neuroscience

“The current benchtop cell sorters are too expensive, too un-safe, and too high-maintenance. More importantly, they have very low biocompatibility. The cell-sorting process can reduce cell viability and functions by 30–99 percent for many fragile or sensitive cells such as neurons, stem cells, liver cells and sperm cells. We are developing an acoustic cell sorter that has the potential to address all these problems.”


Researchers describe an acoustic cell sorter capable of the kind of high sorting throughput necessary to compete with commercial fluorescence activated cell sorters.

Read more

Sep 16, 2015

MIT creates diode for light, makes photonic silicon chips possible

Posted by in categories: computing, electronics, mobile phones, transportation

Light-emitting diodes (LEDs) are a cornerstone of consumer tech. They make thin-and-light TVs and smartphones possible, provide efficient household, handheld, and automobile illumination, and, of course, without LEDs your router would not have blinkenlights. Thanks to some engineers from MIT, though, a new diode looks set to steal the humble LED’s thunder. Dubbed a diode for light, and crafted using standard silicon chip fabrication techniques, this is a key discovery that will pave the path to photonic (as opposed to electronic) pathways on computer chips and circuit boards.

In electronics, a diode is a gate that only allows electrons to pass in one direction (and with an LED, it also emits light at the same time). In this case, the diode for light — which is made from a thin layer of garnet — is transparent in one direction, but opaque in the other. Garnet is usually hard to deposit on a silicon wafer, but the MIT researchers found a way to do it — and that’s really the meat of this discovery.

Diode for light diagramBasically, it’s now possible, with regular chip-fab tools, to create an integrated silicon circuit with optical, rather than electronic, interconnects — both internally, and between other chips. Photons, moving through the kind of transparent metamaterials that would be required to make such a circuit, move a lot faster than electrons. Furthermore, optical channels, through wavelength-division multiplexing, can carry a lot more data than electric signals. At the moment, hundreds of copper wires connect the CPU, northbridge, and memory — with on-chip photonic controllers, a motherboard might only have 10 or 20 channels.

Read more

Sep 16, 2015

How 5G will Power the Future Internet of Things

Posted by in categories: internet, mobile phones, transportation

At Intel Developer Forum in San Francisco August 18th – 20th, two Intel executives discuss how 5G network capabilities will transform the way we live.

Imagine taking a trip to a cabin in the woods to get some work done and have a mini-vacation. Today, given our need for wireless connection, that’s a sketchy proposition.

You’ve got GPS in your rental car, plus your laptop, your smartphone, maybe a tablet or a smartwatch. But what if there’s no cable? What if there’s no Wi-Fi connection? What if the cellular connection is weak?

Read more