Toggle light / dark theme

Facebook’s upcoming AR wrist controllers will hijack your nerves

All of which would be nice and handy, but clearly, privacy and ethics are going to be a big issue for people — particularly when a company like Facebook is behind it. Few people in the past would ever have lived a life so thoroughly examined, catalogued and analyzed by a third party. The opportunities for tailored advertising will be total, and so will the opportunities for bad-faith actors to abuse this treasure trove of minute detail about your life.

But this tech is coming down the barrel. It’s still a few years off, according to the FRL team. But as far as it is concerned, the technology and the experience are proven. They work, they’ll be awesome, and now it’s a matter of working out how to build them into a foolproof product for the mass market. So, why is FRL telling us about it now? Well, this could be the greatest leap in human-machine interaction since the touchscreen, and frankly Facebook doesn’t want to be seen to be making decisions about this kind of thing behind closed doors.

“I want to address why we’re sharing this research,” said Sean Keller, FRL Director of Research. “Today, we want to open up an important discussion with the public about how to build these technologies responsibly. The reality is that we can’t anticipate or solve all the ethical issues associated with this technology on our own. What we can do is recognize when the technology has advanced beyond what people know is possible and make sure that the information is shared openly. We want to be transparent about what we’re working on, so people can tell us their concerns about this technology.””


When augmented reality hits the market at full strength, putting digital overlays over the physical world through transparent glasses, it will intertwine itself deeper into the fabric of your life than any technology that’s come before it. AR devices will see the world through your eyes, constantly connected, always trying to figure out what you’re up to and looking for ways to make themselves useful.

Facebook is already leaps and bounds ahead of the VR game with its groundbreaking Oculus Quest 2 wireless headsets, and it’s got serious ambitions in the augmented reality space too. In an online “Road to AR glasses” roundtable for global media, the Facebook Reality Labs (FRL) team laid out some of the eye-popping next-gen AR technology it’s got up and running on the test bench. It also called on the public to get involved in the discussion around privacy and ethics, with these devices just a few scant years away from changing our world as completely as the smartphone did.

Study shows stronger brain activity after writing on paper than on tablet or smartphone

A study of Japanese university students and recent graduates has revealed that writing on physical paper can lead to more brain activity when remembering the information an hour later. Researchers say that the complex, spatial and tactile information associated with writing by hand on physical paper is likely what leads to improved memory.

“Actually, paper is more advanced and useful compared to electronic documents because paper contains more one-of-a-kind information for stronger memory recall,” said Professor Kuniyoshi L. Sakai, a neuroscientist at the University of Tokyo and corresponding author of the research recently published in Frontiers in Behavioral Neuroscience. The research was completed with collaborators from the NTT Data Institute of Management Consulting.

Researchers combines AI and robotic exoskeleton to make a self walking robotics exoskeleton

Robotics researchers are developing exoskeleton legs capable of thinking and making control decisions on their own using artificial intelligence called ExoNet

THE PROBLEM

Current generation of exoskeleton legs need to be manually controlled by users via smartphones or joysticks, It has a problem where motors need to change their operating mode manually when they perform a new activity in different terrains.

Producing highly efficient LEDs based on 2D perovskite films

Energy efficient light-emitting diodes (LEDs) have been used in our everyday life for many decades. But the quest for better LEDs, offering both lower costs and brighter colors, has recently drawn scientists to a material called perovskite. A recent joint-research project co-led by the scientist from City University of Hong Kong (CityU) has now developed a 2-D perovskite material for the most efficient LEDs.

From household lighting to mobile phone displays, from pinpoint lighting needed for endoscopy procedures, to light source to grow vegetables in Space, LEDs are everywhere. Yet current high-quality LEDs still need to be processed at high temperatures and using elaborated deposition technologies—which makes their production cost expensive.

Scientists have recently realized that —semiconductor materials with the same structure as calcium titanate mineral, but with another elemental composition—are extremely promising candidate for next generation LEDs. These perovskites can be processed into LEDs from solution at room temperature, thus largely reducing their production cost. Yet the electro-luminescence performance of perovskites in LEDs still has a room for improvements.

Using Artificial Intelligence to Generate 3D Holograms in Real-Time on a Smartphone

A new method called tensor holography could enable the creation of holograms for virtual reality, 3D printing, medical imaging, and more — and it can run on a smartphone.

Despite years of hype, virtual reality headsets have yet to topple TV or computer screens as the go-to devices for video viewing. One reason: VR can make users feel sick. Nausea and eye strain can result because VR creates an illusion of 3D viewing although the user is in fact staring at a fixed-distance 2D display. The solution for better 3D visualization could lie in a 60-year-old technology remade for the digital world: holograms.

Holograms deliver an exceptional representation of 3D world around us. Plus, they’re beautiful. (Go ahead — check out the holographic dove on your Visa card.) Holograms offer a shifting perspective based on the viewer’s position, and they allow the eye to adjust focal depth to alternately focus on foreground and background.

The Apple Car Is Coming Sooner Than You Think

Tesla remains the king.

Ranjan KC


The Apple Car. Quite possibly the most hotly anticipated rumour of this decade. And last decade. Years in the making, and still years from its first appearance, what do we know about the Apple Car?

The late Apple co-founder Steve Jobs was said to be thinking about the company’s involvement in the automotive industry way back in 2008, the era of the iPhone 3G. Fast forward a few years and the Project Titan name begins to get thrown around, an Apple project destined to bring autonomous transport to life. More than 1000 employees were transferred onto this project in its early days.

Apple seemingly put all its eggs into this basket though, because in 2016 rumours had it that Project Titan was getting axed. After major staffing changes and leadership issues, the Project remains in operation today with John Giannandrea at the wheel — Apple’s artificial intelligence and machine learning chief.

State of the Edge report projects edge computing will reach $800B by 2028

The State of the Edge report is based on analysis of the potential growth of edge infrastructure from the bottom up across multiple sectors modeled by Tolaga Research. The forecast evaluates 43 use cases spanning 11 vertical industries.

The one thing these use cases have in common is a growing need to process and analyze data at the point where it is being created and consumed. Historically, IT organizations have deployed applications that process data in batch mode overnight. As organizations embrace digital business transformation initiatives, it’s becoming more apparent that data needs to be processed and analyzed at the edge in near real time.

Of course, there are multiple classes of edge computing platforms, ranging from smartphones and internet of things (IoT) gateways to complete hyperconverged infrastructure (HCI) platforms that are being employed to process data at scale at the edge of a telecommunications network.

New approach found for energy-efficient AI applications

Most new achievements in artificial intelligence (AI) require very large neural networks. They consist of hundreds of millions of neurons arranged in several hundred layers, i.e. they have very ‘deep’ network structures. These large, deep neural networks consume a lot of energy in the computer. Those neural networks that are used in image classification (e.g. face and object recognition) are particularly energy-intensive, since they have to send very many numerical values from one neuron layer to the next with great accuracy in each time cycle.

Computer scientist Wolfgang Maass, together with his Ph.D. student Christoph Stöckl, has now found a design method for that paves the way for energy-efficient high-performance AI hardware (e.g. chips for driver assistance systems, smartphones and other mobile devices). The two researchers from the Institute of Theoretical Computer Science at Graz University of Technology (TU Graz) have optimized artificial neuronal networks in for image classification in such a way that the —similar to neurons in the brain—only need to send out signals relatively rarely and those that they do are very simple. The proven classification accuracy of images with this design is nevertheless very close to the current state of the art of current image classification tools.