Toggle light / dark theme

O,.o.


Millions of us use Bluetooth wireless communications every day—to make phone calls when driving, with our fitness trackers, streaming at work or play. Innocent enough, seemingly. But no technology comes without a warning: a recently discovered Bluetooth vulnerability allows hackers to spy on your conversations or take control of your smart phone. The vulnerability deals with the encryption between two devices. It even has a name—a KNOB hack (Key Negotiation Of Bluetooth).

This is not the first time Bluetooth has been hacked and it likely won’t be the last. And this one has its limitations. To take advantage of the KNOB vulnerability the hacker has to be in close proximity of your phone. There is also currently no evidence that this vulnerability has been exploited maliciously.

Still, for the sake of cyber hygiene, take the following steps to protect yourself from a KNOB hack: • Install updates for your smart phone as they become available. • Remove devices paired with your phone that you no longer need or recognize. • Turn off Bluetooth when you are not using it.

In Korea, scientists are turning to better ways for improving our screen time, and this means 3D printing something most of us know little about: quantum dots. Focusing on refining the wonders of virtual reality and other electronic displays even further, researchers from the Nano Hybrid Technology Research Center of Korea Electrotechnology Research Institute (KERI), a government-funded research institute under National Research Council of Science & Technology (NST) of the Ministry of Science and ICT (MSIT), have created nanophotonic 3D printing technology for screens. Meant to be used with virtual reality, as well as TVs, smartphones, and wearables, high resolution is achieved due to a 3D layout expanding the density and quality of the pixels.

Led by Dr. Jaeyeon Pyo and Dr. Seung Kwon Seol, the team has published the results of their research and development in “3D-Printed Quantum Dot Nanopixels.” While pixels are produced to represent data in many electronics, conventionally they are created with 2D patterning. To overcome limitations in brightness and resolution, the scientists elevated this previously strained technology to the next level with 3D printed quantum dots to be contained within polymer nanowires.

BlackBerry is all set to come back from the dead for a surprise second time, with OnwardMobility picking up the baton from TCL, which ended its licencing agreement earlier this year.

We don’t know a great deal about the handsets yet, except that they’ll be 5G connected, manufactured by Foxconn subsidiary FIH Mobile Limited and coming to North American and European markets by mid 2021.

The BlackBerry will come back from the dead in 2021 | T3.

Innovation is key for developing the future of agriculture and sometimes it comes from unlikely places.

The NASA Artemis Mission is working to develop space exploration, but here on Earth, they are partnering with the University of California Berkeley to use Land Satellite Seven to benefit agriculture.

According to NASA Administrator Jim Bridenstine, “We can use that data from space and combine it with weather stations from Earth, and we can get very precise evapotranspiration measurements, down to a quarter of an acre. What that means is we can provide farmers with very specific irrigation plans.”

The technology is still in the testing phase but could one day make farming a little easier. “Imagine being a farmer and going out into your field with your iPhone, looking at it and having an app on there that tells you exactly what your irrigation needs to be for this quarter of an acre for this type of soil and this type of crop,” Bridenstine states.

NASA looks to partner with private businesses to bring new technologies to the market. “The challenge is land sat only has a revisit of two weeks,” he notes. “Weather changes a lot in two weeks; so, I think there is a future where a commercial company could create lots of satellites that could provide this data to farmers.”

NASA’s Mars rovers have been one of the great scientific and space successes of the past two decades.

Four generations of rovers have traversed the red planet gathering , sending back evocative photographs, and surviving incredibly harsh conditions—all using on-board computers less powerful than an iPhone 1. The latest , Perseverance, was launched on July 30, 2020, and engineers are already dreaming of a future generation of rovers.

While a major achievement, these missions have only scratched the surface (literally and figuratively) of the planet and its geology, geography, and atmosphere.

Circa 2018


Measuring one million times less than the width of a human hair, graphene is harder than diamonds and 200 times stronger than steel. Small, strong, and flexible, it is the most conductive material on earth and has the potential to charge a cell phone in just five seconds or to upload a terabit of data in one. It can be used to filter salt from water, develop bullet-stopping body armor, and create biomicrorobots.

These incredible properties have captured the attention of scientists and industry specialists around the world, all seeking to harness graphene’s potential for applications in electronics, energy, composites and coatings, biomedicine, and other industries.

Derived from graphite, the same graphite used in pencils and many other common use products, graphene is, ironically, one of the most expensive materials on the planet. This is because the process of chemically peeling off, or exfoliating, a single layer of graphene from graphite ore is cost-prohibitive on an industrial scale.

Sources & further reading:
https://sites.google.com/view/sources-asteroidmining/
Getting rare materials from the ground into your phone is ugly. The mining industry is responsible for air and water pollution and the destruction of entire landscapes. But what if we could replace the mining industry on Earth with a clean process that can’t harm anyone? Well, we can. All we need to do is look up.

OUR CHANNELS
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
German Channel: https://kgs.link/youtubeDE
Spanish Channel: https://kgs.link/youtubeES

HOW CAN YOU SUPPORT US?
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
This is how we make our living and it would be a pleasure if you support us!

Get Merch designed with ❤ from https://kgs.link/shop

China’s Xiaomi has launched a new TV as part of the 10th anniversary celebration that also saw the announcement of the Mi 10 Ultra smartphone. The Mi TV Lux Transparent Edition brings sci-fi into the living room with an edge-to-edge self-luminous television that you can see through.

We’ve seen a few transparent televisions and screens from industry big hitters like Samsung, LG and Panasonic over the years, but Xiaomi says its Mi TV Lux Transparent Edition is the first to go into mass production.

The 55-inch OLED panel is just 5.7-mm thin and sits on a rounded base and, when the TV isn’t powered on, the display looks like a window between you and whatever is behind it – though it can be set to show arty display images if desired. But Xiaomi is promising an “unprecedented visual experience” when it’s switched on, with “extra rich blacks and unmatched brightness.”

Do you agree Eric Klien

Apple AI chief and ex-Googler John Giannandrea dives into the details with Ars.


Machine learning (ML) and artificial intelligence (AI) now permeate nearly every feature on the iPhone, but Apple hasn’t been touting these technologies like some of its competitors have. I wanted to understand more about Apple’s approach, so I spent an hour talking with two Apple executives about the company’s strategy—and the privacy implications of all the new features based on AI and ML.