Toggle light / dark theme

Physicists Created an Exotic Superconductor Controlled by Magnetism

Superconductivity continues to revolutionize technology in so many ways. While some technological advances rely on finding ways to encourage zero-resistance currents at warmer temperatures, engineers are also considering better ways of fine-controlling the super-efficient flow of electrons.

Unfortunately, many processes that would work just fine for run-of-the-mill electronics, such as the application of external magnetic fields, risk interfering with the properties that make superconductors so efficient.

An international team of scientists has succeeded in confining an exotic state of superconductivity that’s controlled by strong magnetism rather than disrupted by it.

Quantum Barkhausen noise detected for the first time

Quantum Barkhausen noise, which arises from the cooperative quantum tunnelling of a huge number of magnetic spins, has been observed for the first time and may be the largest macroscopic quantum phenomena ever seen.


Researchers in the US and Canada have detected an effect known as quantum Barkhausen noise for the first time. The effect, which comes about thanks to the cooperative quantum tunnelling of a huge number of magnetic spins, may be the largest macroscopic quantum phenomena yet observed in the laboratory.

In the presence of a magnetic field, electron spins (or magnetic moments) in a ferromagnetic material all line up in the same direction – but not all at once. Instead, alignment occurs piecemeal, with different regions, or domains, falling into line at different times. These domains influence each other in a way that can be likened to an avalanche. Just as one clump of snow pushes on neighbouring clumps until the entire mass comes tumbling down, so does alignment spread through the domains until all spins point in the same direction.

\r \r

3D-printed “metamaterial” is stronger than anything in nature

Using lasers and metal powder, Australian scientists have created a super strong, super lightweight new — but they got the idea for this sci fi-sounding creation from plants.

The challenge: Materials that are strong yet lightweight, such as carbon fiber and graphene, are used to make everything from medical implants to airships, and developing ones with ever greater “strength-to-weight ratios” is the goal of many material scientists.

In pursuit of that goal, some have turned to nature, looking for ways to replicate in metal the hollow lattice structures, like those in the Victoria water lily, that make some plants remarkably strong.

Scientists finally make ‘goldene’, potentially breakthrough new material

I found this on NewsBreak: Scientists finally make ‘goldene’, potentially breakthrough new material.


Researchers have managed to create “goldene”, an incredibly thin version of gold.

The work follows the successful production of graphene, which is made out of a single layer graphite atoms. That has been hailed as a miracle material: it is astonishingly strong, and much better at conducting heat and electricity than copper.

Goldene is built on the same principle, with researchers spreading out gold so it is just one atom layer thick. And, similar to graphene, scientists say that the process gives it a variety of new properties that could lead to major breakthroughs.