Dedicated to those who argue that life extension is bad because it will create overpopulation problems. In adittion to the fact that natality rates are dangerously decreasing in some developed countries, this is only one example of changes that may will take place well before life extension may create a problem of such type, if ever.
Plenty, an ag-tech startup in San Francisco co-founded by Nate Storey, has been able to increase its productivity and production quality by using artificial intelligence and its new farming strategy. The company’s farm farms take up only 2 acres yet produce 720 acres worth of fruit and vegetables. In addition to their impressive food production, they also manage the production with robots and artificial intelligence.
Should interest those into links on aging/longevity and neuroscience.
The mammalian center for learning and memory, hippocampus, has a remarkable capacity to generate new neurons throughout life. Newborn neurons are produced by neural stem cells (NSCs) and they are crucial for forming neural circuits required for learning and memory, and mood control. During aging, the number of NSCs declines, leading to decreased neurogenesis and age-associated cognitive decline, anxiety, and depression. Thus, identifying the core molecular machinery responsible for NSC preservation is of fundamental importance if we are to use neurogenesis to halt or reverse hippocampal age-related pathology.
While there are increasing number of tools available to study NSCs and neurogenesis in mouse models, one of the major hurdles in exploring this fundamental biological process in the human brain is the lack of specific NSCs markers amenable for advanced imaging and in vivo analysis. A team of researchers led by Dr. Mirjana Maletić-Savatić, associate professor at Baylor College of Medicine and investigator at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, and Dr. Louis Manganas, associate professor at the Stony Brook University, decided to tackle this problem in a rather unusual way. They reasoned that if they could find proteins that are present on the surface of NSCs, then they could eventually make agents to “see” NSCs in the human brain.
Following on in the vein of my recent topics, this week I am looking at mTOR. A crucial protein that performs the function of an enzyme that is critical for day to day function. There are so many terms and words, subjects and strategies, abound, and so many talk in terms where a basic understanding of the subject is necessary to benefit fully, that I decided to create a kind of library, or resource where you can brush up on all the core fundamentals. Should you stimulate mTOR or seek to restrict it? What will happen if I do? Is this a short term strategy or a lifestyle goal? And what is the real state of the science that underpins it all? These are all questions you, or friends, may have, or even may have heard but been unable to answer fully or concisely, hopefully these will help to reduce those issues. Next week I will be looking at its partner in crime, AMPK, together they exist in balance like a playground see-saw… Until then, have an amazing day…
In this video I will look at what mTOR is and how you can harness it to benefit your objectives. By controlling it we can achieve the balance we need which is to grow muscle to stay fit and strong, but also to not burn out too quickly, so we can live a long healthy life, with a long health span. Maximising anti aging to aid in longevity is delicate balance unique to us all and which varies depending on our current goals and objectives.
Join the Transdisciplinary Agora for Future Discussions, Inc. — TAFFD’s.
A bi-weekly virtual town hall-like show presenting in-depth discussions on issues connected to African advancement in the 21st century ranging from science, technology, … See More.
Long but annotated! Most important here is human data for specific treatments due out starting in May or June. And apparently they had a mouse study where they expected a paper due out already but other groups chimed in to help with more testing so there is a delay.
Liz Parrish, CEO of BioViva Science and patient zero of biological rejuvenation with gene therapies, is interviewed by Zora Benhamou on her fresh podcast “HackMyAge”.
In November 2020, I made a HDL video based on a meta-analysis in ~3.4 million subjects that was published in July 2020. In Dec 2020, a larger study (n=15.8 million subjects) was published-those data are presented in the video, and compared against the meta-analysis.
The regeneration of damaged central nervous system (CNS) tissues is one of the biggest goals of regenerative medicine.
Most stroke victims don’t receive treatment fast enough to prevent brain damage. Scientists at The Ohio State University Wexner Medical Center, College of Engineering and College of Medicine have developed technology to “retrain” cells to help repair damaged brain tissue. It’s an advancement that may someday help patients regain speech, cognition and motor function, even when administered days after an ischemic stroke.
Engineering and medical researchers use a process created by Ohio State called tissue nanotransfection (TNT) to introduce genetic material into cells. This allows them to reprogram skin cells to become something different—in this case vascular cells—to help fix damaged brain tissue.
On Sunday, February 212021, at 1 p.m. U.S. Pacific Time, the U.S. Transhumanist Party invites Dr. Aubrey de Grey of the SENS Research Foundation, for an in-depth conversation about recent developments in the quest to reverse the damage of biological aging. The discussion will cover current in rejuvenation research and advocacy, as well as delve into how the prospects for reaching longevity escape velocity have changed since Dr. de Grey’s remarks at the U.S. Transhumanist Party Discussion Panel on Life Extension nearly 4 years ago in 2017.