Toggle light / dark theme

The first couple of months of life is a critical window for microbiome development. Several factors, such as mode of delivery, diet, environment, and the use of antibiotics, shape a child’s gut microbiota, which can have a profound impact on childhood development and lifelong health. For example, recent studies suggest that infants whose microbiome development is disrupted via cesarean section delivery, early antibiotic use, limited breastfeeding, or other factors are at greater risk for asthma and allergies, respiratory infections, inflammatory bowel disease (IBD), type 1 diabetes, and obesity. Citation 14, Citation 15 The assembly of the infant microbiome is first determined by maternal – infant exchanges of microbiota. Citation 16 Therefore, optimizing the maternal microbiome during pregnancy is likely part of a comprehensive approach to protect and promote the fetus’s health and provide the newborn with a specific microbial inoculum at birth. Citation 14, Citation 17 After birth, maternal breast milk promotes the colonization and maturation of the infant’s gut microbiome. Human milk contains a high concentration of indigestible glycans, known as HMOs which can act as growth substrates for beneficial Bifidobacteria to support the early founder strains of the infant microbiome. Citation 18, Citation 19 In addition, HMOs extert several microbiome-independent mechanism such as serving as decoy receptors to effectively block the attachment of pathogenic bacteria and directly interacting with various receptors. Citation 20 The infant microbiome evolves and diversifies further throughout life in response to whether an infant is breastfed, or formula-fed and which type of formula is used. The weaning period (i.e. the introduction of solid food at around 4–12 months) represents another important window of opportunity to positively impact the development of the microbiome as the bacterial community needs to adapt to digest dietary fibers. Studies linking low gut microbial diversity and the lack of specific bacteria to atopic dermatitis emphasize the first 18 month as a critical window period. Citation 21 Complete gut colonization then occurs within approximately 3 years of life and plays an essential role in further digestion, immunity and neuroendocrine pathway development. Citation 22, Citation 23 In cases where antibiotic treatment is necessary, biotic supplements (i.e. pre, pro, syn or postbiotics) have been shown to lessen the deleterious impact of antibiotics on the infant gut microbiome. Citation 24, Citation 25

In healthy adults, the gut microbiome is fully developed and designed to maintain overall balance while promoting its own survival against environmental stressors, with microorganisms engaging in complex interactions. Recent high-resolution studies examining microbiome composition before, during, and after antibiotic use at the individual gene x strain level demonstrate the remarkable adaptability or ‘fitness’ of gut microbial ecosystems. Citation 26, Citation 27 A healthy and fully functional ecosystem primarily aims to preserve its balance, with ecological diversification playing a crucial role in shaping the genetic structure of resident populations to defend against competition and external disruptors and stressors. Citation 27, Citation 28 Thus, intestinal bacterial ecosystems seem to carry an inherent ecological resilience helping to protect both, themselves and as a consequence their host’s health. This resilience seems to be driven by two main factors: a more diverse microbiome appears generally better at preserving its own balance; Citation 29, Citation 30 and 2) a highly collaborative and interdependent nature of microbial communities seems to play a key role in ecological resilience. In a healthy state, different species work together in a balanced and mutually beneficial way through mechanisms like crossfeeding of various microbial nutrients beyond SCFAs and other forms of metabolic cooperation to stabilize bacterial communities under varying environmental conditions. Citation 31 Understanding these mechanisms across all life stages, from infancy to adulthood to old age, while accounting for the variability in adult microbiome profiles shaped by factors such as genetics, diet, lifestyle, and environmental exposures Citation 32–35 will likely enable the design of better-tolerated and more precise interventions. These interventions could holistically target the functionality of microbiome networks rather than focusing solely on individual species or strains and, thus, allow to tap into the endogenous biochemical pathways that act to maintain bacterial homeostasis.

The large diversity of the adult microbiome, however, presents a notable challenge. A previous comprehensive investigation involving over 1,000 healthy individuals from diverse ancestral backgrounds living in shared environments provided interesting insights. It showed that genetic ancestry has minimal influence on gut microbiome composition. Instead, notable similarities were found in the microbiomes of unrelated individuals sharing the same household with over 20% of the differences in microbiome composition between individuals attributed to factors such as habitual diet, medication use, and anthropometric measurements. Citation 36 This is supported by findings from controlled-feeding studies in humans Citation 35 Citation 37 For example, microbiome composition changed detectably within 24 h of initiating a high-fat/low-fiber vs. a low-fat/high-fiber diet Citation 37 despite entrotype stability.

In a new paper, researchers at North Carolina State University show proof of concept for a system that—in a single cycle—actively removes microplastics from water.

The findings, described in the journal Advanced Functional Materials, hold the potential for advances in cleansing oceans and other bodies of water of tiny plastics that may harm human health and the environment.

“The idea behind this work is: Can we make the cleaning materials in the form of soft particles that self-disperse in water, capture microplastics as they sink, and then return to the surface with the captured microplastic contaminants?” said Orlin Velev, the S. Frank and Doris Culberson Distinguished Professor of Chemical and Biomolecular Engineering at NC State and corresponding author of the paper.

Everything the brain does—from storing memories to interpreting sights to regulating emotions—requires energy, all produced by cellular organelles called mitochondria.

However, surprisingly little is known about the distribution and diversity of the brain’s tiny energy processors and how they influence brain health. For instance, how many mitochondria does the brain have? Are they uniformly distributed across the whole brain? Are all brain mitochondria the same? Do changes in the brain’s mitochondria affect mood, cognition, and the development of neurological and psychiatric conditions?

To begin answering these and other questions, Columbia University researchers have created MitoBrainMap, the first-ever atlas of the brain’s mitochondria.

Changes in the heart might mean more than just cardiovascular risk – they could also signal early shifts in brain health.

A large meta-analysis found that even subtle heart problems, like issues with how the heart pumps or relaxes, are linked to smaller brain volumes, particularly in areas related to memory.

Heart Issues May Signal Early Dementia Risk.

Every year, millions of tires end up in landfills, creating an environmental crisis with far-reaching consequences. In the United States alone, over 274 million tires were scrapped in 2021, with nearly 20% of them being discarded in landfills. The accumulation of these waste materials presents not only a space issue but also introduces environmental hazards, such as chemical leaching and spontaneous combustion.

While pyrolysis—a process that chemically recycles rubber through high-temperature decomposition—is widely used, it generates harmful byproducts like benzene and dioxins, posing health and environmental risks.

A study titled “Deconstruction of Rubber via C–H Amination and Aza-Cope Rearrangement,” published in Nature, introduces a novel chemical method for breaking down rubber waste. This technique utilizes C–H amination and a polymer rearrangement strategy to transform discarded rubber into valuable precursors for , offering an innovative and sustainable alternative to traditional recycling methods.

NASA’s Parker Solar Probe just screamed past the Sun for the 23rd time, once again matching its own records for closest approach and fastest human-made object. Zooming through space at 430,000 mph and skimming just 3.8 million miles from the solar surface, the probe is in perfect health and sendi

To prevent similar incidents from reoccurring in the future, Cloudflare has improved credential logging and verification and now mandates the use of automated deployment tooling to avoid human errors.

The company is also updating standard operating procedures (SOPs) to require dual validation for high-impact actions like credential rotation and plans to enhance health checks for faster root cause detection.

Cloudflare’s R2 service suffered another 1-hour long outage in February, which was also caused by a human error.

The University of Cincinnati is leading public urban universities into a new era of innovation and impact. Our faculty, staff and students are saving lives, changing outcomes and bending the future in our city’s direction. Next Lives Here.

Study coauthors include UC’s Sreekar Puchala and Anca Ralescu and Ethan Muchnik of the University of Oregon. The study authors declare no competing interests.

This work was supported by the Office of the Assistant Secretary of Defense for Health Affairs, through the Defense Medical Research and Development Program under Award No. W81XWH-16–2–0020. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense.

The researchers turned to a group of molecules called acylcarnitines, which are associated with declining cognition and breaking down or metabolizing fats and proteins for energy. To test if high acylcarnitine levels in the blood could predict who’s at risk of developing Alzheimer’s, the researchers used data from a large-scale study called the Alzheimer’s Disease Neuroimaging Initiative.

“It was fascinating,” the author said. “Dividing research participants into groups based on their specific acylcarnitine levels highlighted people with more severe Alzheimer’s disease and others with fewer symptoms.” This led the researchers to define a bioenergetic clock based on acylcarnitines—how old a person’s metabolism acts, compared to actual age. Higher bioenergetic age is linked to higher acylcarnitine levels, worsened Alzheimer’s pathology, cognitive decline and brain atrophy.

The researchers also quantified cognitive decline using a common test called the mini-mental state examination, on which a score below 24 out of 30 points indicates impairment. They found that people with low acylcarnitine levels to begin with declined more slowly, losing about 0.5 points less per year than people with high acylcarnitine levels. The benefit is on par with the Alzheimer’s drug lecanemab.

To some degree, a person’s bioenergetic clock ticks forward at a rate determined by their genetics, but having a healthy lifestyle—for example, eating a plant-based diet and exercising —can help keep acylcarnitine levels low, which means a younger bioenergetic age, the author explained.

They went on to identify a subgroup of participants, about 30% of the Alzheimer’s Disease Neuroimaging Initiative, with older bioenergetic age but favorable genetic background. These individuals may benefit more from early lifestyle interventions designed to decrease their bioenergetic age and potentially delay or prevent the onset of Alzheimer’s.

Moving forward, the senior author hopes to home in on the lifestyle interventions most effective for lowering bioenergetic age. For example, eating a low-carb diet may help maintain metabolic health, but just how low would carbohydrate consumption have to be for a person to see benefits?