Toggle light / dark theme

Woolly mouse could have Colossal impact on human longevity

“Our woolly mouse project drove innovations in areas combining the end to end process from our computational biology analysis tools to our multiplex precision genome engineering technologies,” Lamm told us. “These technologies enable precise and efficient genetic modifications at multiple sites within the genome at the same time, which could help with research focused on addressing the complex multi-genetic age-related diseases in the future.”

By further refining the genetic engineering techniques developed by Colossal, researchers may eventually develop therapies tailored to an individual’s genetic makeup, mitigating the effects of aging at a cellular level.

“Many diseases are multigenic in nature and require deep analysis computationally and being able to edit the genome at multiple sites with high degrees of efficiency to not cause off-target effects,” Lamm told us. “Our end to end process and the further development of our multiplex editing and DNA synthesis capabilities will lead to others being able to use our tools and system to treat these more complicated diseases. Together, these innovations are part of the science focused on developing personalized, targeted therapies to mitigate the effects of aging, accelerate the development of regenerative medicine, and extend both lifespan and healthspan.”

AAV Gene Therapy for Maple Syrup Urine Disease Shows Promise

Maple syrup urine disease (MSUD) is a rare genetic inborn error of metabolism characterized by recurrent life-threatening neurologic crises and progressive brain injury. The disease is typically caused by biallelic mutations in genes (branched-chain α-ketoacid dehydrogenase E1α (BCKDHA), E1β (BCKDHB), or dihydrolipoamide branched-chain transacylase (DBT)) subunits which interact to form the mitochondrial BCKDH complex that decarboxylates ketoacid derivatives of leucine, isoleucine, and valine. MSUD can be treated by a strictly controlled diet or allogeneic liver transplantation.

Now, new work demonstrates that a gene therapy prevented newborn death, normalized growth, restored coordinated expression of the affected genes, and stabilized biomarkers in a calf as well as in mice.

This work is published in Science Translational Medicine in the paper, “BCKDHA-BCKDHB digenic gene therapy restores metabolic homeostasis in two mouse models and a calf with classic maple syrup urine disease.

Scientists aiming to bring back woolly mammoth create woolly mice

A plan to revive the mammoth is on track, scientists have said after creating a new species: the woolly mouse.

Scientists at the US biotechnology company Colossal Biosciences plan to “de-extinct” the prehistoric pachyderms by genetically modifying Asian elephants to give them woolly mammoth traits. They hope the first calf will be born by the end of 2028.

Aging Brains Have a Sugar Problem — And Stanford Scientists May Have Found a Fix

Aging depletes the brain’s protective sugar shield, weakening defenses and fueling cognitive decline, but restoring key sugars may reverse these effects.

What if a critical piece of the puzzle of brain aging has been hiding in plain sight? While neuroscience has traditionally focused on proteins and DNA

DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).

Introducing Evo 2, a predictive and generative genomic AI for all domains of life

Researchers at the Arc Institute, Stanford University, and NVIDIA have developed Evo 2, an advanced AI model capable of predicting genetic variations and generating genomic sequences across all domains of life.

Testing shows that Evo 2 accurately predicts the functional effects of mutations across prokaryotic and eukaryotic genomes. It also successfully annotated the woolly mammoth genome from raw without a direct training reference, showing an ability to generalize function from the sequence alone.

Current genomic models struggle with predicting functional impacts of mutations across diverse biological systems, particularly for eukaryotic genomes. Machine learning approaches have demonstrated some success in modeling and prokaryotic genomes. The complexity of eukaryotic DNA, with its long-range interactions and regulatory elements, presents more of a challenge.

How AI Is Transforming The Pharmaceutical Industry

AI-powered precision in medicine is helping to enhance the accuracy, efficiency, and personalization of medical treatments and healthcare interventions. Machine learning models analyze vast datasets, including genetic information, disease pathways, and past clinical outcomes, to predict how drugs will interact with biological targets. This not only speeds up the identification of promising compounds but also helps eliminate ineffective or potentially harmful options early in the research process.

Researchers are also turning to AI to improve how they evaluate a drug’s effectiveness across diverse patient populations. By analyzing real-world data, including electronic health records and biomarker responses, AI can help researchers identify patterns that predict how different groups may respond to a treatment. This level of precision helps refine dosing strategies, minimize side effects, and support the development of personalized medicine where treatments are tailored to an individual’s genetic and biological profile.

AI is having a positive impact on the pharmaceutical industry helping to reshape how drugs are discovered, tested, and brought to market. From accelerating drug development and optimizing research to enhancing clinical trials and manufacturing, AI is reducing costs, improving efficiency, and ultimately delivering better treatments to patients.

‘I’m really just high on life and beauty’: the woman who can see 100 million colours

A woman can see nearly 100 million more colors than the rest of us.

This extraordinary ability, known as tetrachromacy, arises from a rare genetic variation that influences the development of the retina, giving her an extra type of cone cell capable of detecting a broader spectrum of light.

While most people have three types of cone cells, allowing them to see around a million colors, tetrachromats have four, enabling them to perceive a staggering range of hues that remain invisible to the average person. For this woman, the world is a kaleidoscope of vibrant, nuanced colors. Ordinary scenes, such as a pathway of pebbles, transform into a dazzling array of oranges, yellows, greens, blues, and pinks, while others see only dull gray.

However, tetrachromacy is not always a blessing. The overwhelming array of colors in environments like grocery stores can be distressing, as the sheer intensity of visual information becomes exhausting. She finds solace in the simplicity of white surfaces, which provide a rare respite from the constant flood of color. Tetrachromacy is thought to be exclusive to women due to its genetic basis. The genes responsible for red and green cone cells are located on the X chromosome. Women, with two X chromosomes, can carry different versions of these genes, potentially resulting in four distinct cone types. While approximately 12% of women may have the genetic potential for tetrachromacy, only a small fraction exhibit the enhanced color perception associated with the condition. Researchers identified the first tetrachromat in 2010. Since then, others have described experiencing a world filled with richer and more nuanced colors.

Learn more.


As a kid, Concetta Antico was always ‘a bit out of the box’, but it took decades for her to discover just how differently she was seeing the world.

Researchers explore how to build shapeshifting, T-1000-style robots

Researchers have developed small robots that can work together as a collective that changes shape and even shifts between solid and “fluid-like” states — a concept that should be familiar to anyone still haunted by nightmares of the T-1000 robotic assassin from “Terminator 2.”

A team led by Matthew Devlin of UC Santa Barbara described this work in a paper recently published in Science, writing that the vision of “cohesive collectives of robotic units that can arrange into virtually any form with any physical properties … has long intrigued both science and fiction.”

Otger Campàs, a professor at Max Planck Institute of Molecular Biology and Genetics, told Ars Technica that the team was inspired by tissues in embryos to try and design robots with similar capabilities. These robots have motorized gears that allow them to move around within the collective, magnets so they can stay attached, and photodetectors that allow them to receive instructions from a flashlight with a polarization filter.