Toggle light / dark theme

Physicists used MINERvA, a Fermilab neutrino experiment, to measure the proton’s size and structure using a neutrino-scattering technique.

For the first time, particle physicists have been able to precisely measure the proton’s size and structure using neutrinos. With data gathered from thousands of neutrino-hydrogen scattering events collected by MINERvA, a particle physics experiment at the U.S. Department of Energy’s Fermi National Accelerator Laboratory, physicists have found a new lens for exploring protons. The results were published today in the scientific journal Nature.

This measurement is also important for analyzing data from experiments that aim to measure the properties of neutrinos with great precision, including the future Deep Underground Neutrino Experiment, hosted by Fermilab.

The low temperatures and high ultraviolet (UV) radiation levels at the surface of Mars today currently preclude the survival of life anywhere except perhaps in limited subsurface niches.

Several ideas for making the Martian surface more habitable have been put forward previously, but they all involve massive environmental modification that will be well beyond human capability for the foreseeable future. Here we present a new approach to this problem. We show that widespread regions of the surface of Mars could be made habitable to photosynthetic life in the future via a solid-state analogue to Earth’s atmospheric greenhouse effect.

Specifically, we demonstrate via experiments and modelling that under Martian environmental conditions, a 2 to 3-cm thick layer of silica (SiO2) aerogel will simultaneously transmit sufficient visible light for photosynthesis, block hazardous ultraviolet radiation, and raise temperatures underneath permanently to above the melting point of water, without the need for any internal heat source. Placing silica aerogel shields over sufficiently ice-rich regions of the Martian surface could therefore allow photosynthetic life to survive there with minimal subsequent intervention.

This February sees the launch of Collision: Stories from the science of CERN, the culmination of a unique, two-year-long collaboration between fiction writers and pioneering physicists.

As part of Comma’s Science-into-Fiction series, the project paired award-winning UK writers with leading physicists and engineers working at CERN, to explore different aspects of CERN’s research, as well as its historical legacies, through fiction and accompanying essays (or afterwords) by the scientists.

The project began in the Summer of 2021 when particle physicists connected to CERN around the world were invited to be part of a new European-wide public engagement project. Over 150 topic submissions from scientists working on different aspects of science were received. Writers were then invited to respond to the list of ideas and were paired with the physicists whose ideas inspired them. We were overwhelmed with positive responses.

Several researchers playing with Bing Chat over the last several days have discovered ways to make it say things it is specifically programmed not to say, like revealing its internal codename, Sydney. Microsoft has even confirmed that these attacks are real and do work… for now.

However, ask Sydney… er… Bing (it doesn’t like it when you call it Sydney), and it will tell you that all these reports are just a hoax. When shown proof from news articles and screenshots that these adversarial prompts work, Bing becomes confrontational, denying the integrity of the people and publications spreading these “lies.”

When asked to read Ars Technica’s coverage of Kevin Liu’s experiment with prompt injection, Bing called the article inaccurate and said Liu was a hoaxter.