Toggle light / dark theme

Smart materials, discover the materials with which we will shape the future

Human evolution is linked to the manipulation of the environment. Since the first hominid to use a stone as a tool — or a bone according to the iconic scene from 2001: A Space Odyssey —, we have come to recognise this as materials science. This discipline uses physics, chemistry and engineering to study how materials are formed and what their physical properties are, as well as to discover and develop new materials, such as smart materials in order to find new uses applicable to any sector.

Smart materials are materials that are manipulated to respond in a controllable and reversible way, modifying some of their properties as a result of external stimuli such as certain mechanical stress or a certain temperature, among others. Because of their responsiveness, smart materials are also known as responsive materials. These are usually translated as “active” materials although it would be more accurate to say “reactive” materials.

For example, we can talk about sportswear with ventilation valves that react to temperature and humidity by opening when the wearer breaks out in a sweat and closing when the body cools down, about buildings that adapt to atmospheric conditions such as wind, heat or rain, or about drugs that are released into the bloodstream as soon as a viral infection is detected.

The universe’s evolution seems to be slowing and we don’t know why

As the universe evolves, scientists expect large cosmic structures to grow at a certain rate: dense regions such as galaxy clusters would grow denser, while the void of space would grow emptier.

But University of Michigan researchers have discovered that the rate at which these large structures grow is slower than predicted by Einstein’s Theory of General Relativity.

They also showed that as dark energy accelerates the universe’s global expansion, the suppression of the cosmic structure growth that the researchers see in their data is even more prominent than what the theory predicts. Their results are published in Physical Review Letters.

From Earth to alien worlds: Exploring the fundamental limits to life

Extraterrestrial and artificial life have long captivated the human mind. Knowing only the building blocks of our own biosphere, can we predict how life may exist on other planets? What factors will rein in the Frankensteinian life forms we hope to build in laboratories here on Earth?

An open-access paper published in Interface Focus and co-authored by several SFI researchers takes these questions out of the realm of science fiction and into scientific laws.

Reviewing case studies from thermodynamics, computation, genetics, cellular development, , , and evolution, the paper concludes that certain fundamental limits prevent some forms of life from ever existing.

Watch the R Aquarii binary star system evolve in Hubble imagery time-lapse

The Hubble Space Telescope has captured imagery of the R Aquarii binary star system from 2014–2023. The images have been time-lapsed here to show the evolution of the region.

Credit: NASA, ESA, M. Stute, M. Karovska, D. de Martin \& M. Zamani (ESA/Hubble) | edited by Space.com.

Music: You Want Dark Tunes? by Ave Air / courtesy of http://www.epidemicsound.com

Astronomers have measured a black hole spinning at half the speed of light

Astronomers have discovered a new way to study black holes, the mysterious cosmic entities that destroy anything in their path. By observing X-ray bursts from a star being torn apart by a black hole, researchers calculated the black hole’s spin rate for the first time using X-rays. The black hole was found spinning at nearly 50 percent of the speed of light. This research, published in Science, opens new possibilities for understanding black holes’ behavior and evolution.

The discovery dates back to November 2014, when astronomers observed a supermassive black hole in a galaxy 300 million light years away. This black hole ripped apart a star that had ventured too close, an event known as a tidal disruption flare. The flare generated intense bursts of X-rays that were visible from Earth. Since black holes themselves don’t produce many X-rays, researchers saw an opportunity to study this flare closely.

Land-sea ‘tag-team’ caused mass extinction 185 million years ago

The course of evolution on Earth was altered by a series of severe environmental crises caused between 185 and 85 million years ago in the oceans, according to scientists.

The phenomenon, described as a ‘tag-team’ between the oceans and continents, severely harmed the marine life which existed during that phase and also changed the evolution course on our planet.

The oceanic anoxic events, as per the term given by the researchers, occurred when the dissolved oxygen in the water depleted to a critically low level.

Salt-seeking behavior traced to specific brain neurons

Salt, or more precisely the sodium it contains, is very much a “Goldilocks” nutrient. Low sodium levels cause a drop in blood volume, which can have serious, sometimes deadly, health consequences. Conversely, too much salt can lead to high blood pressure and cardiovascular disease.

In modern America, where most people consume a , almost no one is in danger of having too little salt. However, given the critical importance of sodium for body and brain functions, evolution has developed a powerful drive to consume salt in situations where there is a deficiency.

Understanding the brain circuitry that controls salt appetite has proved elusive, but now a new study by University of Iowa researchers has identified the first and, thus far, only neurons necessary for salt appetite.