Menu

Blog

Archive for the ‘evolution’ category: Page 2

Mar 9, 2024

Harvard Scientists Say New Research “Sets the Stage” For Helping Humans Regrow Lost Limbs

Posted by in categories: biotech/medical, evolution

In a collaboration with Kyushu University, a team of Harvard University scientists says their new research into the ability to regrow lost limbs sets the stage’ for proper limb regeneration.

Of course, some animals, including amphibians, can regrow a lost arm or leg, but the team behind this latest research hopes to bring that ability to humans who hope to regrow lost limbs.

The researchers also say this process could facilitate the growing of limbs in animals that lost them to evolution, such as snakes.

Mar 8, 2024

Unveiling the Binding Mechanisms of Cancer-Promoting Proteins

Posted by in categories: biotech/medical, evolution

The Melanoma Antigen Gene (MAGE) family consists of more than 40 proteins in humans, most of which are only present in the testes under healthy conditions. However, in many cancers, these proteins are found in high levels in tissues where they are not usually expressed and are believed to play a role in promoting cancer progression. Researchers from the Bhogaraju group at the European Molecular Biology Laboratory (EMBL) Grenoble have gained new insights into how these proteins bind their targets. The findings could potentially aid in the development of drugs against chemotherapy-or radiotherapy-resistant cancers.

The findings are published in The EMBO Journal, in an article titled, “Structural basis for RAD18 regulation by MAGEA4 and its implications for RING ubiquitin ligase binding by MAGE family proteins.”

“MAGEA4 is a cancer-testis antigen primarily expressed in the testes but aberrantly overexpressed in several cancers,” the researchers wrote. “MAGEA4 interacts with the RING ubiquitin ligase RAD18 and activates translesion DNA synthesis (TLS), potentially favoring tumor evolution. Here, we employed NMR and AlphaFold2 (AF) to elucidate the interaction mode between RAD18 and MAGEA4, and reveal that the RAD6-binding domain (R6BD) of RAD18 occupies a groove in the C-terminal winged-helix subdomain of MAGEA4.”

Mar 5, 2024

What shape is the universe?

Posted by in categories: evolution, space

Key Takeaways:

Princeton University cosmologist David Spergel emphasizes that the universe’s shape reveals crucial insights into its historical evolution and future trajectory. Questions regarding whether the universe will expand indefinitely or eventually contract, as well as its finiteness or infiniteness, all pivot on its shape.

Mar 2, 2024

Dialogues In Longevity — Dr. Aubrey de Grey & Dr. Michael Rose — Past, Present & Future Of Longevity

Posted by in categories: evolution, life extension

Dialogues In Longevity With Dr. Aubrey de Grey, President & Chief Science Officer, Longevity Escape Velocity Foundation & Dr. Michael Rose, Director of the Network for Experimental Research on Evolution (NERE), and Professor, Department of Ecology and Evolutionary Biology, University of…

Mar 1, 2024

Inflation and Bounce from Classical and Loop Quantum Cosmology Imperfect Fluids

Posted by in categories: cosmology, evolution, information science, quantum physics, singularity

The purpose of this work is to investigate how several inflationary and bouncing scenarios can be realized by imperfect fluids. We shall use two different theoretical frameworks, namely classical cosmology and Loop Quantum Cosmology (LQC) (see where the derivation of the Hamiltonian in LQC was firstly derived to yield the modified Friedman equation, and also see for a recent derivation of the effective Hamiltonian in LQC, which was derived by demanding repulsive gravity, as in Loop Quantum Gravity). In both cases we shall investigate which imperfect fluid can realize various inflationary and bouncing cosmology scenarios. The inflationary cosmology and bouncing cosmology are two alternative scenarios for our Universe evolution. In the case of inflation, the Universe starts from an initial singularity and accelerates at early times, while in the case of the bouncing cosmology, the Universe initially contracts until it reaches a minimum radius, and then it expands again. With regards to inflation, we shall be interested in four different inflationary scenarios, namely the intermediate inflation, the Starobinsky inflation, and two constant-roll inflation scenarios. With regards to bouncing cosmologies, we shall be interested in realizing several well studied bouncing cosmologies, and particularly the matter bounce scenario, the superbounce scenario and the singular bounce.

As we already mentioned we shall use two theoretical frameworks, that of classical cosmology and that of LQC. After presenting the reconstruction methods for realizing the various cosmologies with imperfect fluids, we proceed to the realization of the cosmologies by using the reconstruction methods. In the case of classical cosmology, we will calculate the power spectrum of primordial curvature perturbations, the scalar-to-tensor ratio and the running of the spectral index for all the aforementioned cosmologies, and we compare the results to the recent Planck data. The main outcome of our work is that, although the cosmological scenarios we study in this paper are viable in other modified gravity frameworks, these are not necessarily viable in all the alternative modified gravity descriptions. As we will demonstrate, in some cases the resulting imperfect fluid cosmologies are not compatible at all with the observational data, and in some other cases, there is partial compatibility.

We need to note that the perturbation aspects in LQC are not transparent enough and assume that there are no non-trivial quantum gravitational modifications arising due to presence of inhomogeneities. As it was shown in, a consistent Hamiltonian framework does not allow this assumption to be true. The perturbations issues that may arise in the context of the present work, are possibly more related to some early works in LQC, so any calculation of the primordial power spectrum should be addressed as we commented above.

Feb 29, 2024

Scientists reveal how first cells could have formed on Earth

Posted by in categories: chemistry, evolution

Roughly 4 billion years ago, Earth was developing conditions suitable for life. Origin-of-life scientists often wonder if the type of chemistry found on the early Earth was similar to what life requires today. They know that spherical collections of fats, called protocells, were the precursor to cells during this emergence of life. But how did simple protocells first arise and diversify to eventually lead to life on Earth?

Now, Scripps Research scientists have discovered one plausible pathway for how protocells may have first formed and chemically progressed to allow for a diversity of functions.

The findings, published online on February 29, 2024, in the journal Chem, suggest that a chemical process called phosphorylation (where are added to the molecule) may have occurred earlier than previously expected. This would lead to more structurally complex, double chained protocells capable of harboring chemical reactions and dividing with a diverse range of functionalities. By revealing how protocells formed, scientists can better understand how could have taken place.

Feb 29, 2024

Alex Rosenberg | Intentionality, Evolution, and More

Posted by in categories: biological, evolution, neuroscience

Alex Rosenberg is the R. Taylor Cole Professor of Philosophy at Duke University. His research focuses on the philosophy of biology and science more generally, mind, and economics.

/ friction.
/ discord.
/ frictionphilo.

Continue reading “Alex Rosenberg | Intentionality, Evolution, and More” »

Feb 28, 2024

Scientists Map the Largest Magnetic fields in Galaxy Clusters using Synchrotron Intensity Gradient

Posted by in categories: cosmology, evolution

In a new study, scientists have mapped magnetic fields in galaxy clusters, revealing the impact of galactic mergers on magnetic-field structures and challenging previous assumptions about the efficiency of turbulent dynamo processes in the amplification of these fields.

Galaxy clusters are large, gravitationally bound systems containing numerous galaxies, hot gas, and dark matter. They represent some of the most massive structures in the universe. These clusters can consist of hundreds to thousands of galaxies, bound together by gravity, and are embedded in vast halos of hot gas called the intracluster medium (ICM).

ICM, consisting mainly of ionized hydrogen and helium, is held together by the gravitational pull of the cluster itself. Magnetic fields in large-scale structures, like galaxy clusters, play pivotal roles in shaping astrophysical processes. They influence the ICM, impact galaxy formation and evolution, contribute to cosmic ray transport, participate in cosmic magnetization, and serve as tracers of large-scale structure evolution.

Feb 28, 2024

Researchers identify enzyme key to training cells to fight autoimmune disorders

Posted by in categories: biotech/medical, evolution

Researchers at the University of Massachusetts Amherst recently released a first-of-its-kind study focusing on the rare autoimmune disorder aplastic anemia to understand how a subset of cells might be trained to correct the overzealous immune response that can lead to fatal autoimmune disorders. The research, published in Frontiers in Immunology, identifies a specific enzyme known as PRMT5, as a key regulator of suppressive activity in a specialized population of cells.

The is a marvel of evolution. When a pathogen enters the body, can identify it, call for backup, attack the pathogen, and then, when the threat has been eradicated, return to a peaceful state. But sometimes, as in the rare autoimmune disorder aplastic , something goes wrong.

In patients with aplastic anemia, the aberrant immune cells, in this case Th1 cells, misidentify healthy stem cells in bone marrow as pathogenic and attack them. Without these bone marrow stem cells, the body can’t make white blood cells to fight infections, red blood cells to carry oxygen throughout the body, or platelets that help stop bleeding.

Feb 27, 2024

New measurement of cosmic distances in the dark energy survey gives clues about the nature of dark energy

Posted by in categories: cosmology, evolution, particle physics

We now have a standard model of cosmology, the current version of the Big Bang theory. Although it has proved very successful, its consequences are staggering. We know only 5% of the content of the universe, which is normal matter. The remaining 95% is made up of two exotic entities that have never been produced in the laboratory and whose physical nature is still unknown.

These are , which accounts for 25% of the content of the cosmos, and dark energy, which contributes 70%. In the standard model of cosmology, dark energy is the energy of empty space, and its density remains constant throughout the .

According to this theory, propagated in the very early universe. In those early stages, the universe had an enormous temperature and density. The pressure in this initial gas tried to push the particles that formed it apart, while gravity tried to pull them together, and the competition between the two forces created sound waves that propagated from the beginning of the universe until about 400,000 years after the Big Bang.

Page 2 of 12812345678Last