Toggle light / dark theme

As devices get smaller and more powerful, the risk of them overheating and burning out increases substantially. Despite advancements in cooling solutions, the interface between an electronic chip and its cooling system has remained a barrier for thermal transport due to the materials’ intrinsic roughness.

Material after graphene coating. (Image: CMU)

Sheng Shen, a professor of mechanical engineering Opens in new window, has fabricated a flexible, powerful, and highly-reliable material to efficiently fill the gap (ACS Nano, “3D Graphene-Nanowire “Sandwich” Thermal Interface with Ultralow Resistance and Stiffness”).

A new all-dry polymerization technique uses reactive vapors to create thin films with enhanced properties, such as mechanical strength, kinetics and morphology. The synthesis process is gentler on the environment than traditional high-temperature or solution-based manufacturing and could lead to improved polymer coatings for microelectronics, advanced batteries and therapeutics.

“This scalable technique of initiated chemical vapor deposition polymerization allows us to make new materials, without redesigning or revamping the whole chemistry. We just simply add an ‘active’ solvent,” said Rong Yang, assistant professor in the Smith School of Chemical and Biomolecular Engineering in Cornell Engineering. “It’s a little bit like a Lego. You team up with a new connecting piece. There’s a ton you can build now that you couldn’t do before.”

This micrograph image shows an initiated chemical vapor deposition coating made by doctoral student Pengyu Chen in the lab of Rong Yang, assistant professor in the Smith School of Chemical and Biomolecular Engineering in Cornell Engineering. (Image: Cornell University)

Zhongli Pan is the recipient of the 2023 Distinguished Service Award by the Rice Technical Working Group, which will be presented at the 2023 RTWF Conference on February 20–23. The award recognizes individuals who have given distinguished long-term service to the rice industry in areas of research, education, international agriculture, administration and industry rice technology.

Post-harvest losses are common in the global food and agricultural industry. Research shows that storage grain pests can cause serious post-harvest losses, almost 9% in developed countries to 20% or more in developing countries. To address this problem, Zhongli Pan, an adjunct professor in the Department of Biological and Agricultural Engineering, has developed a potential solution.

Pan’s recent project using an IoT (Internet of Things) based smart wireless technology to remotely detect early insect activity in storage, processing, handling and transportation may solve the insect infestation related challenges for the agricultural industry. The technology uses a novel device called SmartProbe – designed by Pan and his team using wireless sensors and cameras – and leverages cloud computing to monitor and predict insect occurrences. This could help control insect pest, reduce food loss and the fumigants used in agricultural products today. Ragab Gebreil, a project scientist in Pan’s lab, is the co-inventor of this technology.

That’s the premise of Yi Zheng’s new invention. The associate professor of mechanical and industrial engineering at Northeastern has created a sustainable material that can be used to make buildings or other objects able to keep cool without relying on conventional cooling systems.

Circa: 2021


MIE Associate Professor Yi Zheng developed a “cooling paper” that could help cool the air in homes and businesses without the use of electricity.

Main photo: What if buildings could stay cool all on their own—no electricity required? That’s the premise of a new invention by Yi Zheng, associate professor of mechanical and industrial engineering at Northeastern. Photo by Ruby Wallau/Northeastern University.

The sun beats down, making everything you touch radiate burning heat. Beads of sweat form all over your body, even when you sit still. It’s one of those beastly hot summer (or spring) days.

Watch the extended cut of the Singularity, starring Adam Driver in a journey for truth and a website that makes websites.

Visit thesingularity.squarespace.com to Enter the Singularity.


Connect with us:
➤ TikTok: https://www.tiktok.com/@squarespace.
➤ Instagram: https://www.instagram.com/squarespace.
➤ Pinterest: https://www.pinterest.com/squarespace.
➤ Facebook: https://www.facebook.com/squarespace.
➤ Twitter: https://twitter.com/squarespace.
➤ LinkedIn: https://www.linkedin.com/company/squarespace.

👋 About Squarespace.
Squarespace empowers millions of dreamers, makers, and doers by providing them with the tools they need to bring their creative ideas to life. On Squarespace’s dynamic all-in-one platforms, customers can claim a domain, build a website, sell online, and market a brand. Our suite of products combines cutting-edge design and world-class engineering, making it easier than ever to establish and own your online presence.

#TheSingularity #Website #AdamDriver #Squarespace

Reconfigurable antennas—those that can tune properties like frequency or radiation beams in real time, from afar—are integral to future communication network systems, like 6G. But many current reconfigurable antenna designs can fall short: they dysfunction in high or low temperatures, have power limitations or require regular servicing.

To address these limitations, in the Penn State College of Engineering combined electromagnets with a compliant mechanism, which is the same mechanical engineering concept behind binder clips or a bow and arrow. They published their proof-of-concept reconfigurable compliant mechanism-enabled patch antenna today (Feb. 13) in Nature Communications.

“Compliant mechanisms are engineering designs that incorporate elements of the materials themselves to create motion when force is applied, instead of traditional rigid body mechanisms that require hinges for motion,” said corresponding author Galestan Mackertich-Sengerdy, who is both a doctoral student and a full-time researcher in the college’s School of Electrical Engineering and Computer Science (EECS). “Compliant mechanism-enabled objects are engineered to bend repeatedly in a certain direction and to withstand .”

Scientists from the Micro, Nano and Molecular Systems Lab at the Max Planck Institute for Medical Research and the Institute for Molecular Systems Engineering and Advanced Materials at Heidelberg University have created a new technology to assemble matter in 3D. Their concept uses multiple acoustic holograms to generate pressure fields with which solid particles, gel beads and even biological cells can be printed.

These results pave the way for novel 3D cell culture techniques with applications in biomedical engineering. The results of the study were published in the journal Science Advances.

Additive manufacturing or 3D printing enables the fabrication of complex parts from functional or . Conventional 3D printing can be a slow process, where objects are constructed one line or one layer at a time. Researchers in Heidelberg and Tübingen now demonstrate how to form a 3D object from smaller building blocks in just a single step.

Dr. Nick Melosh at the BrainMind Summit hosted at Stanford, interviewed by BrainMind member Christian Bailey.

Nick Melosh is a Professor of Materials Science and Engineering, Stanford University. Nick’s research at Stanford focuses on how to design new inorganic structures to seamlessly integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include “nanostraw” drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ‘fuse’ into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ‘bridge’ projects that span between engineering and biological/clinical needs. My long history with nano-and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.”

Learn more about BrainMind: https://brainmind.org/
Apply to BrainMind: https://brainmind.org/application

The organoids can be used to study the development of diseases and the effects of drugs.

Michael Helmrath, a pediatric surgeon at Cincinnati Children’s Hospital Medical Center, and his colleagues made headlines last week when they revealed trials where they had transplanted balls of human intestinal tissue into mice, according to a report by *Wired* published on Thursday.

After a few weeks, these transplants developed key features of the human immune system, introducing a model that could be used to effectively simulate the human intestinal system.

It’s not the first time researchers at Cincinnati Children’s make such an advancement in organoids (miniature replicas of human organs). In 2010, the institution became the first in the world to create a working intestinal organoid. ## Containing human cells

Since organoids contain human cells and exhibit some of the same structures and functions as real organs, scientists everywhere are using them to study how organs develop, how diseases occur and how drugs work.

“It’s incredibly important that when we are trying to create these platforms for testing drug efficacy and drug side effects in human tissue models that we actually make sure that we are as close to, and as complete as, the tissue in which the drug will work eventually in our human body. So, adding the immune system is an important part of that,” told *Wired* Pradipta Ghosh, director of the Humanoid Center of Research Excellence at the University of California San Diego School, which is engineering human organoids to test drugs. Ghosh was not part of the new study.

Helmrath and his team started with induced pluripotent stem cells, which can turn into any type of body tissue, and fed them a specific molecular cocktail to coax them into transforming into intestinal cells. They ended up with some organoid spheres that the team then carefully transplanted into mice.

The Tesla transformation to a fully integrated design.


Join me and Cory Steuben as he reviews all the different ways Tesla has an advantage over their competitors from manufacturing, the factories, the business model and the team.

Between, Cory, Sandy and the other associates at Munro & Associates they are likely the best in the planet who knows the most about how different cars are made and about the auto industry and the competition in the auto industry.

Cory is the President of Munro & Associates who is the de facto leader in reverse engineering and teardown benchmarking. They tear down all sorts of cars and they know every single part and every single price, the supply chain and what it takes to manufacture these parts.

Cory Steuben on Twitter:@corysteuben.