Toggle light / dark theme

Stiffer colon could signal risk of early-onset colorectal cancer

Increased stiffness of the colon, spurred by chronic inflammation, may encourage the development and progression of early-onset colorectal cancer (CRC), a study co-led by UT Southwestern Medical Center researchers suggests. The findings, published in Advanced Science, could lead to new ways to prevent and treat this deadly subset of CRC.

“We consider this study a significant advancement toward identifying those at risk of early-onset CRC and finding new ways to treat them,” said Emina Huang, M.D., M.B.A., Professor of Surgery in the Division of Colon and Rectal Surgery and Executive Vice Chair of Research for Surgery at UT Southwestern. She is also Professor of Biomedical Engineering and in the Harold C. Simmons Comprehensive Cancer Center.

UT Southwestern partnered with researchers from The University of Texas at Dallas on the study.

Peering inside perovskite: 3D imaging reveals how passivation boosts solar cell efficiency

Perovskite solar cells have garnered widespread attention as a low-cost, high-efficiency alternative to conventional silicon photovoltaics. However, defects in perovskite films impede charge transport, resulting in energy loss and compromised operational stability.

One solution to this problem is “passivation treatment”—a process that adds chemicals such as simple salts or organic molecules to the film. These small molecules or ions latch onto defects in the perovskite material, preventing the defects from interfering with electrical flow. Unfortunately, verifying the internal efficacy of various passivation treatments remains challenging since most characterization techniques only probe the surface or provide averaged macroscopic information.

Now, however, researchers at the Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS) have made an important breakthrough by developing a three-dimensional (3D) electrical imaging technique that directly reveals how defect passivation treatments work in perovskite films. The study was published in Newton on December 31.

“Zentropy Theory” May Unlock Previously Impossible Electronics Based on Transparent Ceramics

“There was no existing theory in the ferroelectrics community that could explain these results,” Liu explained.

Keeping Chaos at Bay with Small Amounts of Energy

To unlock the advanced material’s performance and open up potential commercial applications, Haixue Yan, a reader in materials science and engineering from Queen Mary University of London, explored several different ideas. That search effort led him to Liu’s relatively new zentropy theory idea. According to a statement announcing the new approach, zentropy theory suggests that systems trend towards disorder “if no energy is applied to keep the chaos at bay.”

5 Sci-Fi Fantasies That Could Soon Become Reality

Five sci-fi technologies becoming real today, from BCIs to space elevators.

Get Nebula using my link for 50% off an annual subscription: https://go.nebula.tv/isaacarthur.
Check out Joe Scott’s Oldest & Newest: https://nebula.tv/videos/joescott-oldest-and-newest-places-o…saacarthur.
Watch my exclusive video Chronoengineering: https://nebula.tv/videos/isaacarthur-chronoengineering-manip…technology.

Grab one of our new SFIA mugs and make your morning coffee a little more futuristic — available now on our Fourthwall store! https://isaac-arthur-shop.fourthwall.com/
Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: https://www.patreon.com/IsaacArthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-arthur.
Facebook Group: https://www.facebook.com/groups/1583992725237264/
Reddit: https://www.reddit.com/r/IsaacArthur/
Twitter: https://twitter.com/Isaac_A_Arthur on Twitter and RT our future content.
SFIA Discord Server: https://discord.gg/53GAShE
Credits:
5 Sci-Fi Fantasies That Could Soon Become Reality.
Written, Produced & Narrated by: Isaac Arthur.
Editor: Donagh Broderick.
Select imagery/video supplied by Getty Images.

Chapters.
0:00 Intro.
1:52 Brain-Computer Interfaces (BCI)
6:26 Dream Recording & Memory Replay.
8:48 Artificial Wombs & Designer Babies.
16:13 Bio.
18:56 Space Elevators.
21:12 Weather Control.
21:30 Graphene.
22:15 De-Extinciton.
21:40 Superconductors & Fusion.
27:23 Oldest & Newest.
28:26 Preserving & Rebuilding the Human Body.

Nanoparticle therapy reprograms tumor immune cells to attack cancer from within

Within tumors in the human body, there are immune cells (macrophages) capable of fighting cancer, but they have been unable to perform their roles properly due to suppression by the tumor. A KAIST research team led by Professor Ji-Ho Park of the Department of Bio and Brain Engineering have overcome this limitation by developing a new therapeutic approach that directly converts immune cells inside tumors into anticancer cell therapies.

In their approach, when a drug is injected directly into a tumor, macrophages already present in the body absorb it, produce CAR (a cancer-recognizing device) proteins on their own, and are converted into anticancer immune cells known as “CAR-macrophages.” The paper is published in the journal ACS Nano.

Solid tumors —such as gastric, lung, and liver cancers—grow as dense masses, making it difficult for immune cells to infiltrate tumors or maintain their function. As a result, the effectiveness of existing immune cell therapies has been limited.

New sensor measures strain, strain rate and temperature with single material layer

Researchers from the Institute of Metal Research (IMR) of the Chinese Academy of Sciences have developed an innovative flexible sensor that can simultaneously detect strain, strain rate, and temperature using a single active material layer, representing a significant advance in multimodal sensing technology.

The study, published in Nature Communications, addresses the longstanding challenge of conventional sensors requiring complex multilayer designs that integrate different materials for distinct sensing functions. These traditional approaches often involve complicated signal acquisition and external power supplies, limiting their reliability in continuous monitoring applications.

Led by Prof. Tai Kaiping, the researchers designed the sensor based on a specially designed network of tilted tellurium nanowires (Te-NWs). Through material and structural engineering, they overcame a fundamental limitation where thermoelectric and piezoelectric signals could not be collected in the same direction within conventional materials. In this unique architecture, both signals are simultaneously detected and output in the out-of-plane direction.

New method uses spin motion to control heat flow in magnetic materials

NIMS, in joint research with the University of Tokyo, AIST, the University of Osaka, and Tohoku University, have proposed a novel method for actively controlling heat flow in solids by utilizing the transport of magnons—quasiparticles corresponding to the collective motion of spins in a magnetic material—and demonstrated that magnons contribute to heat conduction in a ferromagnetic metal and its junction more significantly than previously believed.

The creation of new principles “magnon engineering” for modulating thermal transport using magnetic materials is expected to lead to the development of thermal management technologies. This research result is published in Advanced Functional Materials.

Thermal conductivity is a fundamental parameter characterizing heat conduction in a solid. The primary heat carriers are known to be electrons and phonons, quasiparticles corresponding to lattice vibrations. In current thermal engineering, efforts are underway to modulate thermal conductivity and interfacial thermal resistance by elucidating and controlling the transport properties of heat carriers. In particular, heat conduction modulation focusing on the transport and scattering of phonons has been actively studied over the past decades as “phonon engineering.”

Controlled colonization of the human gut with a genetically engineered microbial therapeutic

Great paper highlighting key challenges for genetically engineered bacterial therapies in the human gut. It is respectable that this paper was published in Science despite some “negative” results. Although the genetically engineered bacteria were all supposed to die after removal of porphyrin from the diet, they sometimes rebounded. Even with an improved porphyrin pathway which was supposed to resist mutational rebound, the bacteria still persisted in a mouse model, apparently by mysterious non-mutational means. Maybe the microbiomes of the mice somehow supplied porphyrin to the bacteria without the knowledge of the researchers. Furthermore, therapeutic application of the genetically engineered bacteria in humans only resulted in modest (and not statistically significant) decreases in urine oxalate. This was partly due to horizontal gene transfer which replaced the engineered oxalate degradation pathway and partly due to the general fitness burden of the engineered oxalate degradation pathway. As such, this paper revealed a lot of important obstacles which will need to be worked on for bacterial therapies to move forward in the future.

(https://www.science.org/doi/10.1126/science.adu8000)


Precision microbiome programming for therapeutic applications is limited by challenges in achieving reproducible colonic colonization. Previously, we created an exclusive niche that we used to engraft engineered bacteria into diverse microbiota in mice by using a porphyran prebiotic. Building on this approach, we have now engineered conditional attenuation into a porphyran-utilizing strain of Phocaeicola vulgatus by replacing native essential gene regulation with a porphyran-inducible promoter to allow reversible engraftment. Engineering a five-gene oxalate degradation pathway into the reversibly engrafting strain resulted in a therapeutic candidate that reduced hyperoxaluria, a cause of kidney stones, in preclinical models.

/* */