Toggle light / dark theme

Smaller and smarter MEMS and electronics for bullets that can monitor a building during urban warfare

Engineers at the U.S. Army Armament Research, Development and Engineering Center, or ARDEC, have been making advancements in an initiative called “Component Miniaturization.”

Its mission focuses on making armament systems more precise, energy efficient, scalable and effective by reducing the size of critical components in sub-systems such as safe and arm devices, electronics packages, power supplies and inertial measurement systems. Size reductions in one sub-system can have a positive effect on another. For example, a smaller and more efficient electronics package design can reduce power supply demands as well as reduce the need for heavier supporting structures. The space savings and mass savings could then be used to add a larger explosive warhead or increase control surfaces for additional maneuverability. The reduced size and mass could also allow for additional portability to smaller calibers or to systems with greater launch velocities.

The initiative involves several discrete projects, some of which are described below:

Faraday Rotation Spectroscopy for Speedy Medical Testing

Nice.


Researchers at the University of Central Florida (UCF) in the US are combining nanoscience with the principle of Faraday rotation, a magnetic phenomenon discovered in 1845, in a new method for speedy medical tests.

The team applied the magneto-optical technique, called frequency-domain Faraday rotation spectroscopy—or fd-FRS, to characterize proteins, using antibody-functionalized magnetic nanoparticles (MNPs).

“Fd-FRS is a new way of looking at the interaction between light and magnetized material,” says Shawn Putnam, assistant professor UFC’s College of Engineering & Computer Science. “We covered the surfaces of magnetic nanoparticles with a layer of biological sensors and measured their movement after exposure to their corresponding biological targets for detection.”

Supercomputers for Quantum Computers

NICE.


The Science

Newswise — Quantum computers — a possible future technology that would revolutionize computing by harnessing the bizarre properties of quantum bits, or qubits. Qubits are the quantum analogue to the classical computer bits “0” and “1.” Engineering materials that can function as qubits is technically challenging. Using supercomputers, scientists from the University of Chicago and Argonne National Laboratory predicted possible new qubits built out of strained aluminum nitride. Moreover, the scientists showed that certain newly developed qubits in silicon carbide have unusually long lifetimes.

The Impact

Quantum computers could break common cryptography techniques, search huge datasets, and simulate quantum systems in a fraction of the time it would take today’s computers. However, engineers first need to harness the properties of quantum bits. Engineering new qubits with less difficult methods could lower one of the significant barriers to scaling quantum computers from small prototypes into larger-scale technologies.

MIT Researchers Created An Algorithm That Can Detect Emotion During The conversation

Nice new algorithm for humanoid systems.


A person dissipates various kind of emotion during the daily conversation. The expression actually depends on the statement of the narrator but, sometimes it is very difficult to perceive someone’s sentiment behind the speech. To unveil the emotion behind someone’s speech, scientists created an artificial intelligence algorithm.

A research team from Massachusetts Institute of Technology’s(MIT) from Computer Science and Artificial Intelligence Laboratory (CSAIL) and Institute for Medical Engineering and Science (IMES) built a wearable app that is programmed with the algorithm. It could be a perfect alternative of polygraph because polygraphs are not really reliable because it has a lot of errors. Their invention was first officially introduced in the official press release of MIT News.

Ph.D. candidate Mohammad Ghassemi, lead researcher of this program said in a statement, “Our work is a step in this direction, suggesting that we may not be that far away from the world where people can have an AI social coach right in their pocket”. Ghassemi and his team equipped a fitness tracker with the app that collects physical and speech data to examine the tonal characteristics.

Scientists utilise innovative neuroimaging approach to unravel complex brain networks

A research team led by Professor Ed X. Wu of the Department of Electrical and Electronic Engineering at the University of Hong Kong has used an innovative neuroimaging tool to interrogate the complex brain networks and functions.

The team has successfully manipulated two pioneering technologies: optogenetics and imaging (fMRI), for investigation of the dynamics underlying activity propagation. Their breakthrough to simultaneously capture large-scale brain-wide neural activity propagation and interaction dynamics, while examining their functional roles has taken scientists a step further in unravelling the mysteries of the brain. It could lead to the development of new neurotechnologies for early diagnosis and intervention of brain diseases including autism, Alzheimer’s disease or dementia.

The findings have recently been published in the prestigious international academic journal Proceedings of the National Academy of Sciences (PNAS).

Sciaky 3D Prints Metal Tank For Arctic Submarine

Nice.


Submarine manufacturer saves major time and cost by 3D Printing a titanium Variable Ballast tank with EBM technology from Sciaky.

The production of an Arctic Explorer submarine was nearly scuppered after the supplier of a component went out of business. To find a solution, however, International Submarine Engineering (ISE) didn’t have to dive too deep. They turned instead to additive manufacturing.

ISE had originally planned to produce the titanium Variable Ballast (VB) tank with traditional manufacturing methods. Their key supplier was an overseas titanium forging facility that previously produced propellant tanks for the Russian space program. But then the supplier went bankrupt.

Enhancing STEM Learning Using Virtual Reality

By now, you’ve probably heard a lot about STEM education (science, technology, engineering, and mathematics). Careers in STEM are the next best thing: as a matter of fact, according to the U.S. Bureau of Labor, jobs in STEM will increase by up to 30 percent by 2022, a dramatic increase over the average industry projection of just 11 percent in the past years.

With that being said, it’s time to think more about using virtual reality in education; as education officials are seeing an increase in opportunity that will help bring STEM learning to life for today’s middle, and high school students.

By presenting a complete view of the world by use of virtual reality, teachers can help offer a new opportunity to students that will close some of the pedagogical gaps that have appeared off and on throughout the duration of the 21st-century classroom environment. These gaps generated from the fact that the curriculum and content in our education have not caught up with one another yet. In other words, education has not caught up with technology advancements.

Neuroprosthetics: Brain Interface Applied in Neurology

The brain is the fattiest organ in your body made up of 60% fat, the dry part that is. 75% of your brain is actually water which houses 100,000 miles of blood vessels that use up 20% of all your oxygen and blood. It’s an amazing piece of hardware. Of all the moonshot projects out there, the ones that relate to augmenting the brain are perhaps the most fascinating. Companies like Kernel have actually succeeded in writing long-term memories to a chip – well, at least 80% of them. When that number hits 100%, the sky is the limit to what we can do with the brain.

If you want a graphic image of what the future holds, imagine a robotic arm on top of your table (no wires) moving its fingers or trying to grab something powered only by someone’s thought. After all those Terminator movies, this could be a bit creepy. You may not get Terminator at your doorstep just yet, but someone with neuroprosthesis might just be ringing your doorbell a few years from now.

Neuroprosthetics or neuroprosthesis is a field of biomedical engineering and neuroscience concerned with the development of neural prostheses which are a series of devices that can substitute your brain’s motor, sensory or cognitive functionality that might have been damaged as a result of an injury or a disease.

Morphing metamaterial models take origami to a whole new level

Metamaterials are an almost magical class of materials that can do things that seem impossible, but they can only perform one miracle at a time. Now Harvard researchers have come up with a toolkit for constructing metamaterials that flow from one shape and function into another, like origami.

Metamaterials have been around since the 1940s, but only in recent years has their development taken off. Unlike conventional substances, metamaterials have functions and properties that are independent of what they’re made of. Instead, their repetitive microstructures allow them to do the seemingly impossible – think flat lenses that act like they’re curved, structures that shrink instead of expanding when heated, and even invisibility cloaks.

The problem is that the substructures that metamaterials rely on are very specific, so each metamaterial can only do one thing at a time. Last year, Harvard researchers demonstrated a way to overcome this limitation with reconfigurable metamaterials made of thin polymer sheets. Now a team from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Wyss Institute of Biologically Inspired Engineering at Harvard University have developed a more general framework to help engineers to create metamaterials that can change shape and function.

/* */