Menu

Blog

Archive for the ‘cosmology’ category: Page 48

Jan 6, 2024

Neutron Stars — The Most Extreme Things that are not Black Holes

Posted by in categories: cosmology, futurism

Get your 12,020 SPACE Calendar here: https://shop.kurzgesagt.org/
WORLDWIDE SHIPPING IS AVAILABLE!
This year’s calendar focuses on the future of humanity and how we will explore space in the next 10,000 years.

We want to get you the best shipping fees. So If you’re located in the EU, please order from our EU-warehouse. If you’re located anywhere else in the world, please go to our World Wide Shop. (The link is the same you will be asked to choose your location once you are there.)
Thanks to everyone for the support!

Continue reading “Neutron Stars — The Most Extreme Things that are not Black Holes” »

Jan 5, 2024

A method to straighten curved space-time

Posted by in categories: cosmology, mathematics, particle physics, quantum physics

One of the greatest challenges of modern physics is to find a coherent method for describing phenomena, on the cosmic and microscale. For over a hundred years, to describe reality on a cosmic scale we have been using general relativity theory, which has successfully undergone repeated attempts at falsification.

Albert Einstein curved space-time to describe gravity, and despite still-open questions about or , it seems, today, to be the best method of analyzing the past and future of the universe.

To describe phenomena on the scale of atoms, we use the second great theory: , which differs from general relativity in basically everything. It uses flat space-time and a completely different mathematical apparatus, and most importantly, perceives reality radically differently.

Jan 5, 2024

Magnetic Mystique: A Deeper Look at Massive Star Systems

Posted by in categories: cosmology, evolution, physics

A new study reveals that magnetic fields are common in star systems with large blue stars, challenging prior beliefs and providing insights into the evolution and explosive nature of these massive stars.

Astronomers from the Leibniz Institute for Astrophysics Potsdam (AIP), the European Southern Observatory (ESO), and the MIT Kavli Institute and Department of Physics have discovered that magnetic fields in multiple star systems with at least one giant, hot blue star, are much more common than previously thought by scientists. The results significantly improve the understanding of massive stars and their role as progenitors of supernova explosions.

Characteristics of O-type Stars.

Jan 5, 2024

ESA’s 2023 Space Saga: From Jupiter’s Moons to Dark Matter Revelations [Video]

Posted by in categories: asteroid/comet impacts, cosmology, existential risks, satellites

2023 was a landmark year in space exploration for the European Space Agency (ESA), marked by significant missions like Juice’s journey to Jupiter, the launch of the Euclid space telescope for dark matter research, and the decommissioning of ESA’s Aeolus mission.

The year also saw advancements in Earth observation technologies, initiatives to address space debris, and collaborative efforts in asteroid impact studies. Notably, the Galileo satellite system’s new high-accuracy service and the first hardware tests for its second generation of satellites were significant milestones.

Jan 4, 2024

Supernova neutrinos could break physics — if we can make sense of them

Posted by in categories: cosmology, particle physics

Neutrinos produced inside an exploding star could betray exotic particles that would lead to a deeper theory of physics. Will our detectors be ready in time for the next nearby supernova?

Jan 4, 2024

NASA telescopes start tҺe year witҺ a double bang

Posted by in categories: cosmology, particle physics

A colorful, festive image sҺows different types of ligҺt containing tҺe remains of not one, but at least two exploded stars. TҺis supernova remnant is ƙnown as 30 Doradus B (30 Dor B for sҺort) and is part of a larger region of space wҺere stars Һave been continuously forming for tҺe past 8 to 10 million years. It is a complex landscape of darƙ clouds of gas, young stars, ҺigҺ-energy sҺocƙs, and superҺeated gas, located 160,000 ligҺt-years away from EartҺ in tҺe Large Magellanic Cloud, a small satellite galaxy of tҺe Milƙy Way.

TҺe new image of 30 Dor B was made by combining X-ray data from NASA’s CҺandra X-ray Observatory (purple), optical data from tҺe Blanco 4-meter telescope in CҺile (orange and cyan), and infrared data from NASA’s Spitzer Space Telescope (red). Optical data from NASA’s Hubble Space Telescope was also added in blacƙ and wҺite to ҺigҺligҺt sҺarp features in tҺe image.

A team of astronomers led by Wei-An CҺen from tҺe National Taiwan University in Taipei, Taiwan, Һave used over two million seconds of CҺandra observing time of 30 Dor B and its surroundings to analyze tҺe region. TҺey found a faint sҺell of X-rays tҺat extends about 130 ligҺt-years across. (For context, tҺe nearest star to tҺe sun is about four ligҺt-years away). TҺe CҺandra data also reveals tҺat 30 Dor B contains winds of particles blowing away from a pulsar, creating wҺat is ƙnown as a pulsar wind nebula.

Jan 4, 2024

Astronomers Detect New Pulsar Wind Nebula and its Associated Pulsar

Posted by in categories: cosmology, particle physics

Astronomers from the Western Sydney University in Australia and elsewhere report the detection of a new pulsar wind nebula and a pulsar that powers it. The discovery, presented in a paper published Dec. 12 on the pre-print server arXiv, was made using the Australian Square Kilometer Array Pathfinder (ASKAP), as well as MeerKAT and Parkes radio telescopes.

Pulsar wind nebulae (PWNe) are nebulae powered by the wind of a pulsar. Pulsar wind is composed of charged particles; when it collides with the pulsar’s surroundings, in particular with the slowly expanding supernova ejecta, it develops a PWN.

Particles in PWNe lose their energy to radiation and become less energetic with distance from the central pulsar. Multiwavelength studies of these objects, including X-ray observations, especially using spatially-integrated spectra in the X-ray band, have the potential to uncover important information about particle flow in these nebulae. This could unveil important insights into the nature of PWNe in general.

Jan 4, 2024

How to Create a Black Hole Out of Thin Air

Posted by in category: cosmology

Black holes were thought to arise from the collapse of dead stars. But a Webb telescope image showing the early universe hints at an alternative pathway.

Jan 3, 2024

Gravitational wave observatory in Eastern WA breaks quantum limit. Why it matters

Posted by in categories: cosmology, quantum physics

KENNEWICK — The LIGO Hanford Observatory near Richland is expected to detect 60% more cataclysmic cosmic events — like colliding neutron stars and black holes — thanks to a quantum limit breakthrough.

Since the observatory was turned back on in May after three years of upgrades, including adding new quantum squeezing technology, it can probe a larger volume of the universe.

“Now that we have surpassed this quantum limit, we can do a lot more astronomy,” said Lee McCuller, assistant professor of physics at the California Institute of Technology and a leader in the study published in the journal “Physical Review X.”

Jan 3, 2024

Magnetic fields in the cosmos: Dark matter could help us discover their origin

Posted by in category: cosmology

The mini-halos of dark matter scattered throughout the cosmos could function as highly sensitive probes of primordial magnetic fields. This is what emerges from a theoretical study conducted by SISSA and published in Physical Review Letters.

Present on immense scales, magnetic fields are found everywhere in the universe. However, their origin is still a subject of debate among scholars. An intriguing possibility is that magnetic fields originated near the birth of the universe itself; that is, they are primordial magnetic fields.

In the study, the researcher showed that if magnetic fields are indeed primordial then it could cause an increase in dark matter density perturbations on small scales. The ultimate effect of this process would be the formation of mini-halos of dark matter, which, if detected, would hint towards a primordial nature of magnetic fields. Thus, in an apparent paradox, the invisible part of our universe could be useful in resolving the nature of a component of the visible one.

Page 48 of 380First4546474849505152Last