Toggle light / dark theme

Confusing? It may sound so, but it isn’t actually. What Benini and Milan have done is apply the theory of the holographic principle to black holes. In this way, their mysterious thermodynamic properties have become more understandable: by focusing on predicting that these bodies have high entropy and looking at them in terms of quantum mechanics, which allows us to describe them as a hologram: they have two dimensions, in which gravity disappears, but they reproduce an object in three dimensions.

But there’s more. Much more.

According to the authors of the new studies, this is only the first step towards a deeper understanding of these cosmic bodies and the properties that characterize them when quantum mechanics intersects with general relativity.

https://youtube.com/watch?v=cdf2UthcirY&feature=share

Scientists and astronomers have always been curious about the peculiarities.
in our solar system. And at the very top of their list of curiosity is dark matter. Although several phenomena has been unraveled by different.
scientists, the mystery that is dark matter still remains largely unsolved.
In a bid to satisfy their curiosity, a team of scientists while researching about.
dark matter have recently discovered a portal leading to the fifth dimension.
and this discovery is set to change how we view the universe forever.
How did the scientists find the portal, and how would this discovery affect.
our world?
Join us as we explore how scientists just announced that they found a portal.
to the fifth dimension.
Dark matter has long since been an enigma to scientists and astronomers.
Although it takes up most of our universe, scientists have yet to fully unravel.
its mystery. With the discovery of the fifth dimension, scientists believe that.
this dimension might explain the seventy-five percent of dark matter that has not been observed yet. Even though we don’t know much about it, most.
of our ideas about the physical universe relies on the concept of dark matter.
Scientists are rooted in this idea simply because dark matter takes up most.
of our universe, and it is regarded as a pinch hitter that helps scientists.
understand how gravity works. They believe several features would dissolve.
or fall apart without an “x factor” of dark matter. Even at that, dark matter.
does not disrupt the particles we see and feel. This means it must also have.
other special properties, hence why more research on dark matter was.
needed.

Disclaimer Fair Use:
1. The videos have no negative impact on the original works.
2. The videos we make are used for educational purposes.
3. The videos are transformative in nature.
4. We use only the audio component and tiny pieces of video footage, only if it’s necessary.

DISCLAIMER:
Our channel is purely made for entertainment purposes, based on facts, rumors, and fiction.

Copyright Disclaimer under section 107 of the Copyright Act 1976, allowance is made for “fair use” for purposes such as criticism, comment, news reporting, teaching, scholarship, education, and research. Fair use is a use permitted by copyright statutes that might otherwise be infringing.

Blazars are some of the brightest objects in the cosmos. They are composed of a supermassive black hole.

A black hole is a place in space where the gravitational field is so strong that not even light can escape it. Astronomers classify black holes into three categories by size: miniature, stellar, and supermassive black holes. Miniature black holes could have a mass smaller than our Sun and supermassive black holes could have a mass equivalent to billions of our Sun.

A group of researchers at Sofia University has found evidence that suggests the reason that a wormhole has never been observed is that they appear almost identical to black holes.

In their paper published in the journal Physical Review D Petya Nedkova, Galin Gyulchev, Stoytcho Yazadjiev and Valentin Delijski describe studying theoretical linear polarization from an that would be situated around a class of static traversable wormholes and compared the findings to images of .

For many years, scientists and science fiction writers have considered the theoretical possibility of a . Such an object, suggests, would take the form of a tunnel of sorts that connects two different parts of the universe. Moving through the tunnel would allow for travel to distant destinations in ways not available to spaceships incapable of moving faster than the —by taking a shortcut.

Lee Smolin is a theoretical physicist, co-inventor of loop quantum gravity, and a contributor of many interesting ideas to cosmology, quantum field theory, the foundations of quantum mechanics, theoretical biology, and the philosophy of science. He is the author of several books including one that critiques the state of physics and string theory called The Trouble with Physics, and his latest book, Einstein’s Unfinished Revolution: The Search for What Lies Beyond the Quantum.

This episode is presented by Cash App. Download it & use code “LexPodcast”:
Cash App (App Store): https://apple.co/2sPrUHe.
Cash App (Google Play): https://bit.ly/2MlvP5w.

PODCAST INFO:
Podcast website:

Lex Fridman Podcast


Apple Podcasts:
https://apple.co/2lwqZIr.
Spotify:
https://spoti.fi/2nEwCF8
RSS:
https://lexfridman.com/feed/podcast/
Full episodes playlist:

Clips playlist:

EPISODE LINKS:
Books mentioned:
- Einstein’s Unfinished Revolution by Lee Smolin: https://amzn.to/2TsF5c3
- The Trouble With Physics by Lee Smolin: https://amzn.to/2v1FMzy.
- Against Method by Paul Feyerabend: https://amzn.to/2VOPXCD

OUTLINE:
0:00 — Introduction.
3:03 — What is real?
5:03 — Scientific method and scientific progress.
24:57 — Eric Weinstein and radical ideas in science.
29:32 — Quantum mechanics and general relativity.
47:24 — Sean Carroll and many-worlds interpretation of quantum mechanics.
55:33 — Principles in science.
57:24 — String theory.

CONNECT:

By using a chain of atoms to simulate a black hole’s event horizon, researchers have shown that Hawking radiation may exist just as the late physicist described. Scientists have created a lab-grown black hole analog to test one of Stephen Hawking’s most famous theories — and it behaves just how he predicted.

Astronomers at Caltech have used a machine learning algorithm to classify 1,000 supernovae completely autonomously. The algorithm was applied to data captured by the Zwicky Transient Facility, or ZTF, a sky survey instrument based at Caltech’s Palomar Observatory.

“We needed a helping hand, and we knew that once we trained our computers to do the job, they would take a big load off our backs,” says Christoffer Fremling, a staff at Caltech and the mastermind behind the , dubbed SNIascore. “SNIascore classified its first supernova in April 2021, and, a year and a half later, we are hitting a nice milestone of 1,000 supernovae.”

ZTF scans the night skies every night to look for changes called transient events. This includes everything from moving asteroids to black holes that have just eaten stars to exploding stars known as supernovae. ZTF sends out hundreds of thousands of alerts a night to around the world, notifying them of these transient events. The astronomers then use other telescopes to follow up and investigate the nature of the changing objects. So far, ZTF data have led to the discovery of thousands of supernovae.

NASA’s Imaging X-ray Polarimetry Explorer allowed scientists to probe a distant blazar, shedding new light on the cosmic giants.

Scientists made observations of bright, shining jets of particles shooting out of a supermassive black hole and they published their findings in a paper in Nature.

Investigating a blazar with state-of-the-art instruments.


Pablo Garcia (NASA/MSFC)

The observations shed new light on the high-energy mechanisms of black holes and will help to improve existing computer models of the cosmic giants at the center of most of the galaxies in the observable universe. They also shed new light on the energy mechanisms of blazars, some of the most mysterious objects in the cosmos.