Menu

Blog

Archive for the ‘computing’ category: Page 727

Sep 20, 2016

How quantum computing could unpick encryption to reveal decades of online secrets

Posted by in categories: computing, encryption, quantum physics, security

QC will need to be on any IT, Security, and/ or tech connected product future state roadmap that spans a 5 + year period because the planning, funding, change management (retooling of resources), etc. will take time to plan & prepare not to mention all those internal & external dependencies and their own efforts around QC in the future because it truly would stink to see an AT&T, or HomeDepot, etc. that invested in their own QC compliant infrastructure suddenly attacked because an external source that they pull from is not QC.


The encryption we take for granted as being uncrackable would have a limited shelf-life in the quantum age, says a security expert.

Read more

Sep 20, 2016

Prepare for threat of quantum computing to encrypted data, Canadian conference told

Posted by in categories: business, computing, encryption, government, quantum physics, security

My suggestion; don’t be one of those companies and governments in the next 5yrs that waits until the 9th hour meanwhile others planned, invested, and executed properly so they’re not exposed like you are.


The race to create new cryptographic standards before super-fast quantum computers are built that can rip apart data protected by existing encryption methods isn’t going fast enough, two senior Canadian officials have warned a security conference.

“I think we are already behind,” Scott Jones, deputy chief of IT security at the Communications Security Establishment (CSE), responsible for securing federal information systems, told the fourth annual international workshop on quantum-safe cryptography in Toronto on Monday.

Continue reading “Prepare for threat of quantum computing to encrypted data, Canadian conference told” »

Sep 20, 2016

Quantum chip keeps you guessing

Posted by in categories: computing, economics, finance, nanotechnology, quantum physics

Random numbers have become important in daily life, given how they are at the heart of e-commerce and secure communications and also form the basis of statistical methods of solving problems in engineering and economics. And yet, truly random numbers are difficult to generate. A series of seemingly random numbers can still show patterns, and this can lead to frauds in e-commerce or errors in computations. Carlos Abellani, Waldimar Amaya, David Domenech, Pascual Munoz, Jose Capmany, Stefano Longhi, Morgan W Michell and Valerio Pruneri from the Institutes of Science and Technology and the Institute of Research and Advanced Studies at Barcelona, Polytechnic University and the firm, VLC Photonica, at Valencia and the Institute of Photonics and Nanotechnology at Milan, describe in the Optical Society’s journal, Optica, a method of using quantum effects to generate truly random numbers with the help of a miniature device that can be embedded in a mobile phone. The operative quality of random numbers is that those in a series cannot be predicted from the preceding ones, nor even any of the digits that appear in them.

Once a random number has been exchanged by a pair of correspondents, they can base a code on this number and keep their exchanges confidential. Devices like computers, which handle e-commerce transactions, thus routinely generate hundreds of large random numbers. The numbers generated by a complex formula are based on a “seed” number to get started, and do pass many statistical tests of randomness. The numbers, however, are not truly random and if a third party should guess the “seed” that was used, he/she could work out the numbers and impersonate others in transactions. Real random numbers are created not by a formula but by physical processes, like the last digits of the number of grains in a handful of sand, the throw of honest dice or even the last digit of the daily stock market index.

Read more

Sep 20, 2016

Alarms Raised Over DARPA-Funded ‘Neural Dust’

Posted by in categories: biotech/medical, computing, internet, neuroscience

Alarms are being raised over the recent advancements in a new DARPA-funded technology known as “electroceuticals,” with the possibility that dark forces could be unleashed in a world where millions have hundreds of tiny neural dust sensors gathering and transmitting the most personal of information into external computer networks. The fears being that non-state actors, hostile nations, and could hack into the most secure and sensitive databases, gaining access to in-body telemetry from a head of state or sending nefarious commands directly into their brain unleashing havoc.

Engineers at UC Berkeley have cracked the millimetre barrier producing the first dust-sized wireless sensor small enough to implant into the body and be parked next to a muscle, nerve or organ. These motes are sprinkled thoughout the body, bringing closer the day when a Fitbit-like device could monitor internal nerves, muscles or organs in real time. The neural dust sensor is born from a DARPA funded weapons program. (DARPA is also the organization responsible for creating the Internet).

We already have zero ability to keep foreign actors, hostile groups, not to mention cybercriminals, from hacking into the most secure and sensitive databases. If they gained access to in-body telemetry from a head of state or sent nefarious commands directly into their brain, what havoc they could wreak.

Continue reading “Alarms Raised Over DARPA-Funded ‘Neural Dust’” »

Sep 20, 2016

Microsoft wants to crack the cancer code using artificial intelligence

Posted by in categories: biotech/medical, computing, health, robotics/AI

Cancer is like a computer virus and can be ‘solved’ by cracking the code, according to Microsoft. The computer software company says its researchers are using artificial intelligence in a new healthcare initiative to target cancerous cells and eliminate the disease.

One of the projects within this new healthcare enterprise involves utilizing machine learning and natural language processing to help lead researchers sift through all the research data available and come up with a treatment plan for individual cancer patients.

IBM is working on something similar using a program called Watson Oncology, which analyzes patient health info against research data.

Continue reading “Microsoft wants to crack the cancer code using artificial intelligence” »

Sep 20, 2016

Dawn of the super human: U. S. is daunted by Russia’s “enhanced human operation”

Posted by in categories: biotech/medical, computing, cyborgs, military, neuroscience, transhumanism

Pentagon accused Russia that the country is working on “enhanced human operation” to create an army of superhuman soldiers. Russia’s Sputnik issues the news.

U.S. Army chiefs are claiming that Moscow is working to create bionic superhuman soldiers with brain implants. And the soldiers will be fuelled by steroids. Usage of steroid will increase the tolerance capability and make the soldiers more resilient. While the brain implant or chip will assist a soldier to fight for a longer time even in extreme warfare. It will also force the soldiers to fight and obey the command at any cost. The sole purpose is to strengthen the soldiers to make them stronger and tougher in battles.

Yet, the U.S. opponent is working to use microscopic technology so that soldiers can cure themselves without any assistance of physicians.

Read more

Sep 20, 2016

Microsoft will ‘solve’ cancer within 10 years

Posted by in categories: biotech/medical, computing

Microsoft has vowed to “solve the problem of cancer” within a decade by using ground-breaking computer science to crack the code of diseased cells so they can be reprogrammed back to a healthy state.

In a dramatic change of direction for the technology giant, the company has assembled a “small army” of the world’s best biologists, programmers and engineers who are tackling cancer as if it were a bug in a computer system.

This summer Microsoft opened its first wet laboratory where it will test out the findings of its computer scientists who are creating huge maps of the internal workings of cell networks.

Continue reading “Microsoft will ‘solve’ cancer within 10 years” »

Sep 20, 2016

D-Wave systems next quantum chip will 1000X faster and will revolutionize machine learning

Posted by in categories: computing, quantum physics, robotics/AI

Dwave’s next quantum chip, due in 2017, will be able to handle 2,000 qubits which is double the usable number in the existing D-Wave 2X system chip. It will be capable of solving certain problems 1,000x faster than its predecessor.

The new processor will also support additional features that allow for more efficient calculations.

“From an internal tests, that looks like that’s a really good thing to do. We’ve got some problems we’ve already sped up by a factor of 1,000 by exploiting that capability,” said Williams at the CW TEC conference in Cambridge.

Continue reading “D-Wave systems next quantum chip will 1000X faster and will revolutionize machine learning” »

Sep 19, 2016

ISARA Corporation Readies Security Measures for the Quantum Age

Posted by in categories: computing, encryption, internet, quantum physics, security

Wireless security and internet standards experts release a complete quantum resistant toolkit for commercial use.

TORONTO, Sept. 19, 2016 /CNW/ — 4TH ETSI/IQC Workshop on Quantum-Safe Cryptography – ISARA Corporation today announced the availability of its ISARA Quantum Resistant (IQR) Toolkit. The toolkit helps software and hardware solution providers build robust commercial products that protect vulnerable infrastructure against the threat quantum computing already poses to widely-used security standards.

Similar to the Y2K crisis, the technology industry is facing a ‘Y2Q’ (years to quantum) challenge that has a limited timeline and requires significant work to ensure systems and information are properly protected. The massive processing power of quantum computers is such that, without integrating quantum resistant security solutions, all security that depends on existing standards is vulnerable.

Read more

Sep 19, 2016

Quantum effects observed in ‘one-dimensional’ wires

Posted by in categories: computing, particle physics, quantum physics

Researchers have observed quantum effects in electrons by squeezing them into one-dimensional ‘quantum wires’ and observing the interactions between them. The results could be used to aid in the development of quantum technologies, including quantum computing.

Scientists have controlled electrons by packing them so tightly that they start to display quantum effects, using an extension of the technology currently used to make computer processors. The technique, reported in the journal Nature Communications, has uncovered properties of quantum matter that could pave a way to new quantum technologies.

The ability to control electrons in this way may lay the groundwork for many technological advances, including quantum computers that can solve problems fundamentally intractable by modern electronics. Before such technologies become practical however, researchers need to better understand quantum, or wave-like, particles, and more importantly, the interactions between them.

Read more