Menu

Blog

Archive for the ‘computing’ category: Page 726

Sep 24, 2016

Room temperature magnetoelectric material created — Uses for next generation computing

Posted by in categories: chemistry, computing, engineering

Multiferroics – materials that exhibit both magnetic and electric order – are of interest for next-generation computing but difficult to create because the conditions conducive to each of those states are usually mutually exclusive. And in most multiferroics found to date, their respective properties emerge only at extremely low temperatures.

Two years ago, researchers in the labs of Darrell Schlom, the Herbert Fisk Johnson Professor of Industrial Chemistry in the Department of Materials Science and Engineering, and Dan Ralph, the F.R. Newman Professor in the College of Arts and Sciences, in collaboration with professor Ramamoorthy Ramesh at UC Berkeley, published a paper announcing a breakthrough in multiferroics involving the only known material in which magnetism can be controlled by applying an electric field at room temperature: the multiferroic bismuth ferrite.

READ MORE ON CORNELL UNIVERSITY | CORNELL CHRONICLE

Continue reading “Room temperature magnetoelectric material created — Uses for next generation computing” »

Sep 23, 2016

6 Charts Breaking Down The Nascent Quantum Computing Startup Ecosystem

Posted by in categories: computing, quantum physics

They forgot ORNL in the laboratory list.


Deals to three companies — D-Wave, Cambridge Quantum Computing, and Quantum Biosystems — dominate funding. But newer players are emerging.

Read more

Sep 23, 2016

Quantum computers will cripple encryption methods within decade, CSE head warns

Posted by in categories: computing, encryption, internet, quantum physics, security

Definitely less than a decade and even less than 7 especially with China Quantum Satellite, Google’s plan release next year of a Quantum device, etc. I hope folks don’t still believe that we’re immune from a QC attack after 2025.


In a rare public speech, Greta Bossenmaier, chief of the Communications Security Establishment, said cryptologists at the CSE and around the world are racing to find new cryptographic standards before Y2Q — years to quantum — predicted for 2026.

She is the third senior CSE official this week to warn publicly of the threat quantum computing poses to widely used public key cryptography (PKC), protecting sensitive data transmissions from hackers, hacktivists, foreign state spies and other malicious actors.

Continue reading “Quantum computers will cripple encryption methods within decade, CSE head warns” »

Sep 23, 2016

D-Wave Founder’s New Startup Combines AI, Robots, and Monkeys in Exo-Suits

Posted by in categories: computing, quantum physics, robotics/AI

Quantum computing pioneers want to patent AI telerobotics controlled by humans, and monkeys.

Read more

Sep 21, 2016

Passive Liquid Flow Can Aid Nanotechnology Development, Study Suggests

Posted by in categories: computing, engineering, nanotechnology, particle physics

Again organic nature teaches technology.


A new study, inspired by water’s movement from roots to leaves in tall trees, shows that a certain kind of passive liquid flow, where liquids naturally move in response to surface atomic interactions instead of being driven by external forces like pumps, is remarkably strong. By virtually modeling the way atoms interact at a solid surface, College of Engineering and Computer Science researchers suggest that passive liquid flow could serve as a highly efficient coolant-delivery mechanism without the need for pumps. The results, published in Langmuir, also have implications for the development of new nanoscale technology.

Read more

Sep 21, 2016

Diamond microdisk “with huge potential” for quantum computing

Posted by in categories: computing, nanotechnology, quantum physics

The diamond microdisk made by Paul Barclay and his team of physicists could lead to huge advances in computing, telecommunications, and other fields.

Barclay and his research group — part of the University of Calgary’s Institute for Quantum Science and Technology and the National Institute of Nanotechnology — have made the first-ever nano-sized optical resonator (or optical cavity) from a single crystal of diamond that is also a mechanical resonator.

The team also measured — in the coupling of light and mechanical motion in the device — the high-frequency, long-lasting mechanical vibrations caused by the energy of light trapped and bouncing inside the diamond microdisk optical cavity.

Read more

Sep 21, 2016

Microsoft is reprogramming cancer

Posted by in categories: biotech/medical, computing

Microsoft is thinking about cancer in terms of computer software.

Microsoft wants to “solve” cancer, and is doing it by thinking about the body like a computer.

The technology giant may be more closely associated with malware than malignant diseases, but researchers working for the company’s “biological computation” unit in Cambridge are showing the former isn’t entirely separate from the latter.

Continue reading “Microsoft is reprogramming cancer” »

Sep 21, 2016

SanDisk outs the ‘world’s first’ 1TB SD card

Posted by in category: computing

It’s been 16 years since the company introduced the first 64MB SD card.

Read more

Sep 20, 2016

In vivo work with neural dust using a wireless and scalable ultrasonic backscatter system for powering and communicating the implanted bioelectronics

Posted by in categories: bioengineering, biotech/medical, computing, neuroscience

Berkeley engineers have built the first dust-sized, wireless sensors that can be implanted in the body, bringing closer the day when a Fitbit-like device could monitor internal nerves, muscles or organs in real time.

Neural dust researchers have already shrunk them to a 1 millimeter cube – about the size of a large grain of sand – contain a piezoelectric crystal that converts ultrasound vibrations from outside the body into electricity to power a tiny, on-board transistor that is in contact with a nerve or muscle fiber. A voltage spike in the fiber alters the circuit and the vibration of the crystal, which changes the echo detected by the ultrasound receiver, typically the same device that generates the vibrations. The slight change, called backscatter, allows them to determine the voltage.

Continue reading “In vivo work with neural dust using a wireless and scalable ultrasonic backscatter system for powering and communicating the implanted bioelectronics” »

Sep 20, 2016

How quantum computing could unpick encryption to reveal decades of online secrets

Posted by in categories: computing, encryption, quantum physics, security

QC will need to be on any IT, Security, and/ or tech connected product future state roadmap that spans a 5 + year period because the planning, funding, change management (retooling of resources), etc. will take time to plan & prepare not to mention all those internal & external dependencies and their own efforts around QC in the future because it truly would stink to see an AT&T, or HomeDepot, etc. that invested in their own QC compliant infrastructure suddenly attacked because an external source that they pull from is not QC.


The encryption we take for granted as being uncrackable would have a limited shelf-life in the quantum age, says a security expert.

Read more