Menu

Blog

Archive for the ‘computing’ category: Page 708

Nov 24, 2016

New quantum states for better quantum memories

Posted by in categories: computing, particle physics, quantum physics

How can quantum information be stored as long as possible? An important step forward in the development of quantum memories has been achieved by a research team of TU Wien.

Conventional memories used in today’s computers only differentiate between the bit values 0 and 1. In quantum physics, however, arbitrary superpositions of these two states are possible. Most of the ideas for new quantum technology devices rely on this “Superposition Principle.” One of the main challenges in using such states is that they are usually short-lived. Only for a short period of time can information be read out of quantum memories reliably, after that it is irrecoverable.

A research team at TU Wien has now taken an important step forward in the development of new quantum storage concepts. In cooperation with the Japanese telecommunication giant NTT, the Viennese researchers lead by Johannes Majer are working on quantum memories based on nitrogen atoms and microwaves. The nitrogen atoms have slightly different properties, which quickly leads to the loss of the quantum state. By specifically changing a small portion of the atoms, one can bring the remaining atoms into a new quantum state, with a lifetime enhancement of more than a factor of ten. These results have now been published in the journal “Nature Photonics.”

Read more

Nov 24, 2016

More reliable way to produce single photons

Posted by in categories: computing, particle physics, quantum physics

Physicists at the University of Bath have developed a technique to more reliably produce single photons that can be imprinted with quantum information.

The invention will benefit a variety of processes which rely on photons to carry quantum information, such as quantum computing, secure quantum communication and precision measurements at low light levels.

Photons, particles of light, can be imprinted with information to be used for things like carrying out calculations and transmitting messages. To do this you need to create individual photons, which is a complicated and difficult process.

Read more

Nov 23, 2016

The Dangers of Quantum Computing

Posted by in categories: augmented reality, computing, quantum physics

Any technology with the word “quantum” in the name is by nature impossible for lay people to understand and even difficult for scientists to get their arms fully around. However, though its workings are mysterious, quantum science offers very useful everyday tools.

There has been a race for quantum computing for years. Part of the reason is that these devices will leave today’s computers in the dust. The other element is that planners see that current computing technology is reaching its growth limits. Quantum computing is the key to the future to them, not science fiction.

Microsoft, which Computerworld says has been researching quantum computing for more than a decade, is expanding its quantum computing efforts. It has put Todd Holmdahl, one of the people involved in the development of Kinect, HoloLens and Xbox, in charge of developing quantum hardware and software. It’s also hired professors from the Delft University of Technology in the Netherlands; the University of Copenhagen; ETH Zurich and University of Sydney in Australia.

Read more

Nov 23, 2016

Qubits in brain can make it a quantum computer?

Posted by in categories: biological, computing, neuroscience, particle physics, quantum physics

The mere mention of “quantum consciousness” makes most physicists cringe, as the phrase seems to evoke the vague, insipid musings of a New Age guru. But if a new hypothesis proves to be correct, quantum effects might indeed play some role in human cognition. Matthew Fisher, a physicist at the University of California, Santa Barbara, raised eyebrows late last year when he published a paper in Annals of Physics proposing that the nuclear spins of phosphorus atoms could serve as rudimentary “qubits” in the brain — which would essentially enable the brain to function like a quantum computer.

Isher’s hypothesis faces the same daunting obstacle that has plagued microtubules: a phenomenon called quantum decoherence. To build an operating quantum computer, you need to connect qubits — quantum bits of information — in a process called entanglement. But entangled qubits exist in a fragile state. They must be carefully shielded from any noise in the surrounding environment. Just one photon bumping into your qubit would be enough to make the entire system “decohere,” destroying the entanglement and wiping out the quantum properties of the system. It’s challenging enough to do quantum processing in a carefully controlled laboratory environment, never mind the warm, wet, complicated mess that is human biology, where maintaining coherence for sufficiently long periods of time is well nigh impossible.

Continue reading “Qubits in brain can make it a quantum computer?” »

Nov 23, 2016

From Bitcoin to puke-tracking: Walmart uses blockchains to monitor food — By Beth Mole | Ars Technica UK

Posted by in categories: business, computing

unknown-1
In October, the commercial giant teamed up with IBM and Tsinghua University in Beijing to track pork in China as it moves from the farm to the shelves.”

Read more

Nov 22, 2016

Microsoft ‘doubles down’ on quantum computing hardware focus

Posted by in categories: augmented reality, computing, quantum physics

Microsoft is accelerating its efforts to make a quantum computer as it looks to a future of computing beyond today’s PCs and servers.

Microsoft has researched quantum computing for more than a decade. Now the company’s goal is to put the theory to work and create actual hardware and software.

To that effect, Microsoft has put Todd Holmdahl—who was involved in the development of Kinect, HoloLens, and Xbox—to lead the effort to create quantum hardware and software. The company has also hired four prominent university professors to contribute to the company’s research.

Continue reading “Microsoft ‘doubles down’ on quantum computing hardware focus” »

Nov 22, 2016

Microsoft’s next big bet? Clue: it’s just hired four top quantum computing scientists

Posted by in categories: computing, quantum physics

We told them glad they listen.


Microsoft says it’s doubling down on quantum computing after nabbing four top scientists who will work with a Microsoft hardware veteran to turn research into reality.

Read more

Nov 22, 2016

New Quantum States For Better Quantum Storage

Posted by in categories: computing, particle physics, quantum physics

Quantum and Crystalize formations for data storage.


How can you store quantum information as long as possible? A team from the Vienna University of Technology is making an important step forward in the development of quantum storage.

The memory that we use today for our computers differs only between 0 and 1. However, quantum physics also allows arbitrary superimpositions of states. On this principle, the “superposition principle”, ideas for new quantum technologies are based. A key problem, however, is that such quantum-physical overlays are very short-lived. Only a tiny amount of time you can read the information from a quantum memory reliably, then it is irretrievably lost.

Continue reading “New Quantum States For Better Quantum Storage” »

Nov 22, 2016

New Method Could Make Quantum Computers a Reality Sooner Than We Thought

Posted by in categories: computing, quantum physics

/futurism.com/new-method-could-make-quantum-computers-a-reality-sooner-than-we-thought/


In Brief

  • Researchers have created quantum dot light-emitting diodes (LEDs) that can produce entangled photons, which could be used to encode information in quantum computing.
  • As of June, the record for the most photons entangled at a time was 10. Before that, the record was eight and that could only be produced at a rate of around nine events per hour.

Researchers from the Tyndall National Institute have devised a method that would make entangling photons easier, and accelerate our journey towards the quantum computing age.

Continue reading “New Method Could Make Quantum Computers a Reality Sooner Than We Thought” »

Nov 22, 2016

Single photon converter: key component of quantum internet

Posted by in categories: computing, internet, quantum physics

A Polish-British team of physicists has constructed and tested a compact, efficient converter capable of modifying the quantum properties of individual photons. The new device should facilitate the construction of complex quantum computers, and in the future may become an important element in global quantum networks, the successors of today’s Internet.

Quantum internet and hybrid quantum computers, built out of subsystems that operate by means of various physical phenomena, are now becoming more than just the stuff of imagination. In an article just published in the journal Nature Photonics, physicists from the University of Warsaw’s Faculty of Physics (FUW) and the University of Oxford have unveiled a key element of such systems: an electro-optical device that enables the properties of individual photons to be modified. Unlike existing laboratory constructions, this new device works with previously unattainable efficiency and is at the same time stable, reliable, and compact.

Building an efficient device for modifying the quantum state of individual photons was an exceptionally challenging task, given the fundamental differences between classical and quantum computing.

Read more