Toggle light / dark theme

DIA awards nearly $800 million in work to major defense primes

The U.S. Defense Intelligence Agency awarded nearly $800 million in contacts to two major defense contractors to improve data storage and network modernization.

The DIA, a military intelligence agency, chose Northrop Grumman to deliver its Transforming All-Source Analysis with Location-Based Object Services (TALOS) program, which focuses on building new big data systems. The contract is worth $690 million. A spokesperson for Northrop Grumman declined to provide the performance period.


The DIA made two awards to Northrop Grumman and GDIT.

SpaceX crew launch delayed to assess Merlin engine concern

NASA said Saturday that the launch of four astronauts on SpaceX’s first operational Crew Dragon mission to the International Space Station has been delayed from Oct. 31 until “no sooner than early-to-mid November,” allowing time for SpaceX to resolve an issue with Falcon 9 rocket engines that halted a recent launch attempt with a GPS navigation satellite.

The engine concern appeared during an Oct. 2 launch attempt of a Falcon 9 rocket with a GPS satellite at Cape Canaveral, prompting computers controlling the final seconds of the countdown to abort the mission just two seconds prior to liftoff.

Elon Musk, SpaceX’s founder and CEO, tweeted after the abort that the countdown was stopped after an “unexpected pressure rise in the turbomachinery gas generator,” referring to equipment used on the rocket’s Merlin main engines. The gas generators on the Merlin 1D engines drives the engines’ turbopumps.

Astronomers produce largest 3D catalog of galaxies

A team of astronomers at the University of Hawaiʻi at Mānoa Institute for Astronomy (IfA) has produced the world’s largest three-dimensional astronomical imaging catalog of stars, galaxies and quasars. The team used data from UH’s Panoramic Survey Telescope and Rapid Response System or Pan-STARRS1 (PS1) on Haleakalā. The PS1 3π survey is the world’s largest deep multi-color optical survey, spanning three-quarters of the sky. IfA astronomers applied novel computational tools to the catalog, to decipher which of the 3 billion objects are stars, galaxies or quasars. For the galaxies, the software also derived estimates of their distances.

The resulting 3D catalog is now available as a high-level science product through the Mikulski Archive for Space Telescopes. It is approximately 300 GB in size, and science users can query the catalog through the MAST CasJobs SQL interface, or download the entire collection as a computer-readable table.

Bringing the promise of quantum computing to nuclear physics

Quantum mechanics, the physics of atoms and subatomic particles, can be strange, especially compared to the everyday physics of Isaac Newton’s falling apples. But this unusual science is enabling researchers to develop new ideas and tools, including quantum computers, that can help demystify the quantum realm and solve complex everyday problems.

That’s the goal behind a new U.S. Department of Energy Office of Science (DOE-SC) grant, awarded to Michigan State University (MSU) researchers, led by physicists at Facility for Rare Isotope Beams (FRIB). Working with Los Alamos National Laboratory, the team is developing algorithms – essentially programming instructions – for quantum computers to help these machines address problems that are difficult for conventional computers. For example, problems like explaining the fundamental quantum science that keeps an atomic nucleus from falling apart.

The $750,000 award, provided by the Office of Nuclear Physics within DOE-SC, is the latest in a growing list of grants supporting MSU researchers developing new quantum theories and technology.

What Brain-Computer Interfaces Could Mean for the Future of Work

Imagine if your manager could know whether you actually paid attention in your last Zoom meeting. Or, imagine if you could prepare your next presentation using only your thoughts. These scenarios might soon become a reality thanks to the development of brain-computer interfaces (BCIs).

To put it in the simplest terms, think of a BCI as a bridge between your brain and an external device. As of today, we mostly rely on electroencephalography (EEG) — a collection of methods for monitoring the electrical activity of the brain — to do this. But, that’s changing. By leveraging multiple sensors and complex algorithms, it’s now becoming possible to analyze brain signals and extract relevant brain patterns. Brain activity can then be recorded by a non-invasive device — no surgical intervention needed. In fact, the majority of existing and mainstream BCIs are non-invasive, such as wearable headbands and earbuds.

The development of BCI technology was initially focused on helping paralyzed people control assistive devices using their thoughts. But new use cases are being identified all the time. For example, BCIs can now be used as a neurofeedback training tool to improve cognitive performance. I expect to see a growing number of professionals leveraging BCI tools to improve their performance at work. For example, your BCI could detect that your attention level is too low compared with the importance of a given meeting or task and trigger an alert. It could also adapt the lighting of your office based on how stressed you are, or prevent you from using your company car if drowsiness is detected.

An electrical trigger fires single, identical photons

Secure telecommunications networks and rapid information processing make much of modern life possible. To provide more secure, faster, and higher-performance information sharing than is currently possible, scientists and engineers are designing next-generation devices that harness the rules of quantum physics. Those designs rely on single photons to encode and transmit information across quantum networks and between quantum chips. However, tools for generating single photons do not yet offer the precision and stability required for quantum information technology.

Now, as reported recently in the journal Science Advances, researchers have found a way to generate single, identical photons on demand. By positioning a metallic probe over a designated point in a common 2-D semiconductor material, the team led by researchers at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has triggered a emission electrically. The photon’s properties may be simply adjusted by changing the .

“The demonstration of electrically driven single-photon emission at a precise point constitutes a big step in the quest for integrable quantum technologies,” said Alex Weber-Bargioni, a staff scientist at Berkeley Lab’s Molecular Foundry who led the project. The research is part of the Center for Novel Pathways to Quantum Coherence in Materials (NPQC), an Energy Frontier Research Center sponsored by the Department of Energy, whose overarching goal is to find new approaches to protect and control quantum memory that can provide new insights into novel materials and designs for quantum computing technology.

The Coding School, IBM Quantum Provide Free Quantum Education to 5,000 Students Around the World

LOS ANGELES, Oct. 6, 2020 /PRNewswire/ — The Coding School is collaborating with IBM Quantum to offer a first-of-its-kind quantum computing course for 5,000 high school students and above, designed to make quantum education globally accessible and to provide high-quality virtual STEM education. To ensure an equitable future quantum workforce, the course is free. Students can apply here.

Self-healing, self-monitoring chip rearranges circuit if damaged

Circa 2013


A standard computer is a complex group of individual parts working together as a whole — RAM, some kind of data storage, a processor, and so on. When one of those integral parts breaks, the computer is rendered useless and the part must be replaced, but what if the computer could begin routing the broken part’s tasks through the parts that are still functional? Computers can’t do that just yet, but researchers have now managed to coax a microchip into doing so.

/* */