Toggle light / dark theme

Michigan House passes bill to make employee microchips voluntary

The microchips can be used as a key fob, a time card, a credit account for the cafeteria or vending machines, or even as a way for employers to track employee productivity.


“With the way technology has increased over the years and as it continues to grow, it’s important Michigan job providers balance the interests of the company with their employees’ expectations of privacy,” said the bill’s sponsor Michigan State Rep. Bronna Kahle. “While these miniature devices are on the rise, so are the calls of workers to have their privacy protected.”

The bill will be introduced to the State Senate where, if it passes, Governor Gretchen Whitmer will be able to sign the legislation into Michigan law.

The microchips in discussion, are about the size of a large grain of rice inserted between an employees thumb and forefinger to give employees access to different amenities throughout the office. They not battery powered, and are instead activated and used as individual ID for the employee when introduced to a Radio Frequency Identification (RFID) reader.

The chips can be used as a key fob for the office, time cards, a credit account for the cafeteria or vending machines, a way to access company laptop or office devices and, more controversially, as a way for employers to track employee productivity.

Researchers create easy-to-use math-aware search interface

Researchers at Rochester Institute of Technology have developed MathDeck, an online search interface that allows anyone to easily create, edit and lookup sophisticated math formulas on the computer.

Created by an interdisciplinary team of more than a dozen faculty and students, MathDeck aims to make notation interactive and easily shareable, rather than an obstacle to mathematical study and exploration. The math-aware interface is free to the public and available to use at mathdeck.cs.rit.edu.

Researchers said the project stems from a growing public interest in being able to do web searches with math keywords and formulas. However, for many people, it can be difficult to accurately express sophisticated math without an understanding of the scientific markup language LaTeX.

Manipulating the Flow of Light in Extreme Ways Using “Magic Angle” Twistronics

‘Twisted’ layers of 2D materials produce photonic topological transition at ‘magic’ rotation angles.

Monash researchers are part of an international collaboration applying ‘twistronics’ concepts (the science of layering and twisting 2D materials to control their electrical properties) to manipulate the flow of light in extreme ways.

The findings, published today in the journal Nature, hold the promise for leapfrog advances in a variety of light-driven technologies, including nano-imaging devices; high-speed, low-energy optical computers; and biosensors.

New On-Chip Laser Shines in Many Colors

A weakness of lasers integrated onto microchips is how they can each generate only one color of light at a time. Now researchers have come up with a simple integrated way to help these lasers fire multiple colors, a new study finds.

When it comes to data and telecommunications applications, integrated lasers would ideally generate multiple frequencies of light to boost how much information they could transmit. One way to achieve this end is an “optical frequency comb,” which converts a pulse of light from a single laser into a series of pulses equally spaced in time and made up of different, equally spaced frequencies of light.

Generating combs long required equipment that was expensive, bulky, complex, and delicate. However, in the past decade or so, researchers began developing miniature and integrated comb systems. These microcombs passed light from a laser through a waveguide to a microresonator—a ring in which circulating light could become a soliton, a kind of wave that preserves its shape as it travels. When solitons left these microresonators, they each did so as very stable, regular streams of pulses—in other words, as frequency combs.

A structural light switch for magnetism

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current technologies are based on ferromagnets, whose states can be flipped readily by magnetic fields. Faster, denser, and more robust next-generation devices would be made possible by using a different class of materials, known as antiferromagnets. Their magnetic state, however, is notoriously difficult to control.

Now, a research team from the MPSD and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency . Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

The strength and direction of a magnet’s ‘north pole’ is denoted by its so-called magnetization. In ferromagnets, this easily reversible magnetization can represent a ‘bit’ of information, which has made them the materials of choice for magnet-based technologies. But ferromagnets are slow to operate and react to stray magnetic fields, which means they are prone to errors and cannot be packed very closely together.

Speeding-Up Quantum Computing Using Giant Atomic Ions – 100 Million Times Larger Than Normal Atoms

Trapped Rydberg ions can be the next step towards scaling up quantum computers to sizes where they can be practically usable, a new study in Nature shows.

Different physical systems can be used to make a quantum computer. Trapped ions that form a crystal have led the research field for years, but when the system is scaled up to large ion crystals this method gets very slow. Complex arithmetic operations cannot be performed fast enough before the stored quantum information decays.

A Stockholm University research group may have solved this problem by using giant Rydberg ions, 100 million times larger than normal atoms or ions. These huge ions are highly interactive and, therefore, can exchange quantum information in less than a microsecond.

Honeywell Says It Has Built The World’s Most Powerful Quantum Computer

Honeywell has been working toward this goal for the past decade when it began developing the technology to produce cryogenics and laser tools. In the past five years, the company assembled a team of more than 100 technologists entirely dedicated to building the machine, and in March, Honeywell announced it would be within three months — a goal it was able to meet even as the Covid-19 turned its workforce upside down and forced some employees to work remotely. “We had to completely redesign how we work in the facilities, had to limit who was coming on the site, and put in place physical barriers,” says Tony Uttley, president of Honeywell Quantum Solutions. “All of that happened at the same time we were planning on being on this race.”


The conglomerate said its machine had reached a Quantum Volume of 64, twice as powerful as IBM’s machine.

Tech Giant Announces ‘World’s Fastest Quantum Computer’ – Are Bitcoin (BTC) and Cryptographic Systems at Risk?

Industrial powerhouse Honeywell says its latest quantum computer is now the fastest in the world. How quickly real-world applications will develop or how swiftly they’ll be able to impact industries or affect cryptographic systems such as Bitcoin is the subject of rigorous debate.

In an announcement on Thursday, Honeywell says its team of scientists, engineers and technicians has delivered a quantum volume of 64. The metric measures both the total number of the computer’s qubits and how well it handles them. IBM’s machine scored a 32, suggesting Honeywell’s quantum computer is twice as fast.

Honeywell’s machine is designed to add up to 640,000 quantum bits (qubits) as the system scales. Tony Uttley, president of Honeywell’s quantum computing division, tells CNET.

/* */